Solutions to the mean curvature equation by fixed point methods
We give conditions on the boundary data, in order to obtain at least one solution for the problem (1) below, with H a smooth function. Our motivation is a better understanding of the Plateau's problem for the prescribed mean curvature equation.
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v4_n5_p617_Mariani http://hdl.handle.net/20.500.12110/paper_13701444_v4_n5_p617_Mariani |
Aporte de: |
id |
paper:paper_13701444_v4_n5_p617_Mariani |
---|---|
record_format |
dspace |
spelling |
paper:paper_13701444_v4_n5_p617_Mariani2023-06-08T16:12:14Z Solutions to the mean curvature equation by fixed point methods Mariani, María Cristina Rial, Diego Fernando Dirichlet problem Fixed points Mean curvature We give conditions on the boundary data, in order to obtain at least one solution for the problem (1) below, with H a smooth function. Our motivation is a better understanding of the Plateau's problem for the prescribed mean curvature equation. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v4_n5_p617_Mariani http://hdl.handle.net/20.500.12110/paper_13701444_v4_n5_p617_Mariani |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Dirichlet problem Fixed points Mean curvature |
spellingShingle |
Dirichlet problem Fixed points Mean curvature Mariani, María Cristina Rial, Diego Fernando Solutions to the mean curvature equation by fixed point methods |
topic_facet |
Dirichlet problem Fixed points Mean curvature |
description |
We give conditions on the boundary data, in order to obtain at least one solution for the problem (1) below, with H a smooth function. Our motivation is a better understanding of the Plateau's problem for the prescribed mean curvature equation. |
author |
Mariani, María Cristina Rial, Diego Fernando |
author_facet |
Mariani, María Cristina Rial, Diego Fernando |
author_sort |
Mariani, María Cristina |
title |
Solutions to the mean curvature equation by fixed point methods |
title_short |
Solutions to the mean curvature equation by fixed point methods |
title_full |
Solutions to the mean curvature equation by fixed point methods |
title_fullStr |
Solutions to the mean curvature equation by fixed point methods |
title_full_unstemmed |
Solutions to the mean curvature equation by fixed point methods |
title_sort |
solutions to the mean curvature equation by fixed point methods |
publishDate |
1997 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13701444_v4_n5_p617_Mariani http://hdl.handle.net/20.500.12110/paper_13701444_v4_n5_p617_Mariani |
work_keys_str_mv |
AT marianimariacristina solutionstothemeancurvatureequationbyfixedpointmethods AT rialdiegofernando solutionstothemeancurvatureequationbyfixedpointmethods |
_version_ |
1768546174761959424 |