Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyani...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti |
| Aporte de: |
| id |
paper:paper_20403364_v7_n17_p7763_Peinetti |
|---|---|
| record_format |
dspace |
| spelling |
paper:paper_20403364_v7_n17_p7763_Peinetti2025-07-30T19:08:39Z Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors Peinetti, Ana Sol Gonzalez, Graciela Alicia Ramirez, Silvana Andrea María Battaglini, Fernando Alumina Electric conductance Electrochemical impedance spectroscopy Electron transport properties Fiber optic sensors Gold Metal nanoparticles Molecules Nanoparticles Adenosine monophosphate Conducting surfaces Conformational change Controlled architecture Fast electron transfer Label-free detection Small-molecule bindings Uncapped Nanoparticles Synthesis (chemical) adenosine phosphate aluminum oxide aptamer gold metal nanoparticle chemistry impedance nanotechnology porosity procedures Adenosine Monophosphate Aluminum Oxide Aptamers, Nucleotide Electric Impedance Gold Metal Nanoparticles Nanotechnology Porosity A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyanide. These uncapped nanoparticles are easily modified with a thiol-containing aptamer for label-free detection of adenosine monophosphate by electrochemical impedance spectroscopy. Our results show that the use of a limited electrical conducting surface inside an insulating environment can be very sensitive to conformational changes, introducing a new approach to the detection of small molecules, exemplified here by the direct and selective detection of adenosine monophosphate at the nanomolar scale. © The Royal Society of Chemistry 2015. Fil:Peinetti, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:González, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ramírez, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Battaglini, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Alumina Electric conductance Electrochemical impedance spectroscopy Electron transport properties Fiber optic sensors Gold Metal nanoparticles Molecules Nanoparticles Adenosine monophosphate Conducting surfaces Conformational change Controlled architecture Fast electron transfer Label-free detection Small-molecule bindings Uncapped Nanoparticles Synthesis (chemical) adenosine phosphate aluminum oxide aptamer gold metal nanoparticle chemistry impedance nanotechnology porosity procedures Adenosine Monophosphate Aluminum Oxide Aptamers, Nucleotide Electric Impedance Gold Metal Nanoparticles Nanotechnology Porosity |
| spellingShingle |
Alumina Electric conductance Electrochemical impedance spectroscopy Electron transport properties Fiber optic sensors Gold Metal nanoparticles Molecules Nanoparticles Adenosine monophosphate Conducting surfaces Conformational change Controlled architecture Fast electron transfer Label-free detection Small-molecule bindings Uncapped Nanoparticles Synthesis (chemical) adenosine phosphate aluminum oxide aptamer gold metal nanoparticle chemistry impedance nanotechnology porosity procedures Adenosine Monophosphate Aluminum Oxide Aptamers, Nucleotide Electric Impedance Gold Metal Nanoparticles Nanotechnology Porosity Peinetti, Ana Sol Gonzalez, Graciela Alicia Ramirez, Silvana Andrea María Battaglini, Fernando Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| topic_facet |
Alumina Electric conductance Electrochemical impedance spectroscopy Electron transport properties Fiber optic sensors Gold Metal nanoparticles Molecules Nanoparticles Adenosine monophosphate Conducting surfaces Conformational change Controlled architecture Fast electron transfer Label-free detection Small-molecule bindings Uncapped Nanoparticles Synthesis (chemical) adenosine phosphate aluminum oxide aptamer gold metal nanoparticle chemistry impedance nanotechnology porosity procedures Adenosine Monophosphate Aluminum Oxide Aptamers, Nucleotide Electric Impedance Gold Metal Nanoparticles Nanotechnology Porosity |
| description |
A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyanide. These uncapped nanoparticles are easily modified with a thiol-containing aptamer for label-free detection of adenosine monophosphate by electrochemical impedance spectroscopy. Our results show that the use of a limited electrical conducting surface inside an insulating environment can be very sensitive to conformational changes, introducing a new approach to the detection of small molecules, exemplified here by the direct and selective detection of adenosine monophosphate at the nanomolar scale. © The Royal Society of Chemistry 2015. |
| author |
Peinetti, Ana Sol Gonzalez, Graciela Alicia Ramirez, Silvana Andrea María Battaglini, Fernando |
| author_facet |
Peinetti, Ana Sol Gonzalez, Graciela Alicia Ramirez, Silvana Andrea María Battaglini, Fernando |
| author_sort |
Peinetti, Ana Sol |
| title |
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| title_short |
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| title_full |
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| title_fullStr |
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| title_full_unstemmed |
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| title_sort |
confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors |
| publishDate |
2015 |
| url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti |
| work_keys_str_mv |
AT peinettianasol confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors AT gonzalezgracielaalicia confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors AT ramirezsilvanaandreamaria confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors AT battaglinifernando confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors |
| _version_ |
1840321726908465152 |