Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors

A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peinetti, Ana Sol, Gonzalez, Graciela Alicia, Ramirez, Silvana Andrea María, Battaglini, Fernando
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti
http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti
Aporte de:
id paper:paper_20403364_v7_n17_p7763_Peinetti
record_format dspace
spelling paper:paper_20403364_v7_n17_p7763_Peinetti2025-07-30T19:08:39Z Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors Peinetti, Ana Sol Gonzalez, Graciela Alicia Ramirez, Silvana Andrea María Battaglini, Fernando Alumina Electric conductance Electrochemical impedance spectroscopy Electron transport properties Fiber optic sensors Gold Metal nanoparticles Molecules Nanoparticles Adenosine monophosphate Conducting surfaces Conformational change Controlled architecture Fast electron transfer Label-free detection Small-molecule bindings Uncapped Nanoparticles Synthesis (chemical) adenosine phosphate aluminum oxide aptamer gold metal nanoparticle chemistry impedance nanotechnology porosity procedures Adenosine Monophosphate Aluminum Oxide Aptamers, Nucleotide Electric Impedance Gold Metal Nanoparticles Nanotechnology Porosity A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyanide. These uncapped nanoparticles are easily modified with a thiol-containing aptamer for label-free detection of adenosine monophosphate by electrochemical impedance spectroscopy. Our results show that the use of a limited electrical conducting surface inside an insulating environment can be very sensitive to conformational changes, introducing a new approach to the detection of small molecules, exemplified here by the direct and selective detection of adenosine monophosphate at the nanomolar scale. © The Royal Society of Chemistry 2015. Fil:Peinetti, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:González, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ramírez, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Battaglini, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Alumina
Electric conductance
Electrochemical impedance spectroscopy
Electron transport properties
Fiber optic sensors
Gold
Metal nanoparticles
Molecules
Nanoparticles
Adenosine monophosphate
Conducting surfaces
Conformational change
Controlled architecture
Fast electron transfer
Label-free detection
Small-molecule bindings
Uncapped Nanoparticles
Synthesis (chemical)
adenosine phosphate
aluminum oxide
aptamer
gold
metal nanoparticle
chemistry
impedance
nanotechnology
porosity
procedures
Adenosine Monophosphate
Aluminum Oxide
Aptamers, Nucleotide
Electric Impedance
Gold
Metal Nanoparticles
Nanotechnology
Porosity
spellingShingle Alumina
Electric conductance
Electrochemical impedance spectroscopy
Electron transport properties
Fiber optic sensors
Gold
Metal nanoparticles
Molecules
Nanoparticles
Adenosine monophosphate
Conducting surfaces
Conformational change
Controlled architecture
Fast electron transfer
Label-free detection
Small-molecule bindings
Uncapped Nanoparticles
Synthesis (chemical)
adenosine phosphate
aluminum oxide
aptamer
gold
metal nanoparticle
chemistry
impedance
nanotechnology
porosity
procedures
Adenosine Monophosphate
Aluminum Oxide
Aptamers, Nucleotide
Electric Impedance
Gold
Metal Nanoparticles
Nanotechnology
Porosity
Peinetti, Ana Sol
Gonzalez, Graciela Alicia
Ramirez, Silvana Andrea María
Battaglini, Fernando
Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
topic_facet Alumina
Electric conductance
Electrochemical impedance spectroscopy
Electron transport properties
Fiber optic sensors
Gold
Metal nanoparticles
Molecules
Nanoparticles
Adenosine monophosphate
Conducting surfaces
Conformational change
Controlled architecture
Fast electron transfer
Label-free detection
Small-molecule bindings
Uncapped Nanoparticles
Synthesis (chemical)
adenosine phosphate
aluminum oxide
aptamer
gold
metal nanoparticle
chemistry
impedance
nanotechnology
porosity
procedures
Adenosine Monophosphate
Aluminum Oxide
Aptamers, Nucleotide
Electric Impedance
Gold
Metal Nanoparticles
Nanotechnology
Porosity
description A controlled architecture of nanoelectrodes, of a similar size to small molecule-binding aptamers, is synthesized inside nanoporous alumina. Gold nanoparticles with a controlled size (about 2 nm) are electrogenerated in the alumina cavities, showing a fast electron transfer process toward ferrocyanide. These uncapped nanoparticles are easily modified with a thiol-containing aptamer for label-free detection of adenosine monophosphate by electrochemical impedance spectroscopy. Our results show that the use of a limited electrical conducting surface inside an insulating environment can be very sensitive to conformational changes, introducing a new approach to the detection of small molecules, exemplified here by the direct and selective detection of adenosine monophosphate at the nanomolar scale. © The Royal Society of Chemistry 2015.
author Peinetti, Ana Sol
Gonzalez, Graciela Alicia
Ramirez, Silvana Andrea María
Battaglini, Fernando
author_facet Peinetti, Ana Sol
Gonzalez, Graciela Alicia
Ramirez, Silvana Andrea María
Battaglini, Fernando
author_sort Peinetti, Ana Sol
title Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
title_short Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
title_full Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
title_fullStr Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
title_full_unstemmed Confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
title_sort confined gold nanoparticles enhance the detection of small molecules in label-free impedance aptasensors
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20403364_v7_n17_p7763_Peinetti
http://hdl.handle.net/20.500.12110/paper_20403364_v7_n17_p7763_Peinetti
work_keys_str_mv AT peinettianasol confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors
AT gonzalezgracielaalicia confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors
AT ramirezsilvanaandreamaria confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors
AT battaglinifernando confinedgoldnanoparticlesenhancethedetectionofsmallmoleculesinlabelfreeimpedanceaptasensors
_version_ 1840321726908465152