Classifying smooth lattice polytopes via toric fibrations
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
Aporte de: |
id |
paperaa:paper_00018708_v222_n1_p240_Dickenstein |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_00018708_v222_n1_p240_Dickenstein2023-06-12T16:39:28Z Classifying smooth lattice polytopes via toric fibrations Adv. Math. 2009;222(1):240-254 Dickenstein, A. Di Rocco, S. Piene, R. Cayley polytope Lattice polytope Nef value Toric fibration Toric variety We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety |
spellingShingle |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety Dickenstein, A. Di Rocco, S. Piene, R. Classifying smooth lattice polytopes via toric fibrations |
topic_facet |
Cayley polytope Lattice polytope Nef value Toric fibration Toric variety |
description |
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Dickenstein, A. Di Rocco, S. Piene, R. |
author_facet |
Dickenstein, A. Di Rocco, S. Piene, R. |
author_sort |
Dickenstein, A. |
title |
Classifying smooth lattice polytopes via toric fibrations |
title_short |
Classifying smooth lattice polytopes via toric fibrations |
title_full |
Classifying smooth lattice polytopes via toric fibrations |
title_fullStr |
Classifying smooth lattice polytopes via toric fibrations |
title_full_unstemmed |
Classifying smooth lattice polytopes via toric fibrations |
title_sort |
classifying smooth lattice polytopes via toric fibrations |
publishDate |
2009 |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein |
work_keys_str_mv |
AT dickensteina classifyingsmoothlatticepolytopesviatoricfibrations AT diroccos classifyingsmoothlatticepolytopesviatoricfibrations AT piener classifyingsmoothlatticepolytopesviatoricfibrations |
_version_ |
1769810363017068544 |