Superfluid Thomas - Fermi approximation for trapped fermi gases

We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous syste...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernndez, S., Capuzzi, P., Szybisz, L.
Formato: Documento de conferencia publishedVersion
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez
Aporte de:
id paperaa:paper_17426588_v150_n3_p_Hernndez
record_format dspace
spelling paperaa:paper_17426588_v150_n3_p_Hernndez2023-06-12T16:50:58Z Superfluid Thomas - Fermi approximation for trapped fermi gases J. Phys. Conf. Ser. 2009;150(3) Hernndez, S. Capuzzi, P. Szybisz, L. Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 info:eu-repo/semantics/conferenceObject info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Electron gas
Equations of motion
Fermions
Contact interaction
Inhomogeneous system
Mean field approximation
Particle currents
Particle densities
Scattering length
Thomas-Fermi approximation
Trapped fermi gas
Local density approximation
spellingShingle Electron gas
Equations of motion
Fermions
Contact interaction
Inhomogeneous system
Mean field approximation
Particle currents
Particle densities
Scattering length
Thomas-Fermi approximation
Trapped fermi gas
Local density approximation
Hernndez, S.
Capuzzi, P.
Szybisz, L.
Superfluid Thomas - Fermi approximation for trapped fermi gases
topic_facet Electron gas
Equations of motion
Fermions
Contact interaction
Inhomogeneous system
Mean field approximation
Particle currents
Particle densities
Scattering length
Thomas-Fermi approximation
Trapped fermi gas
Local density approximation
description We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd.
format Documento de conferencia
Documento de conferencia
publishedVersion
author Hernndez, S.
Capuzzi, P.
Szybisz, L.
author_facet Hernndez, S.
Capuzzi, P.
Szybisz, L.
author_sort Hernndez, S.
title Superfluid Thomas - Fermi approximation for trapped fermi gases
title_short Superfluid Thomas - Fermi approximation for trapped fermi gases
title_full Superfluid Thomas - Fermi approximation for trapped fermi gases
title_fullStr Superfluid Thomas - Fermi approximation for trapped fermi gases
title_full_unstemmed Superfluid Thomas - Fermi approximation for trapped fermi gases
title_sort superfluid thomas - fermi approximation for trapped fermi gases
publishDate 2009
url http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez
work_keys_str_mv AT hernndezs superfluidthomasfermiapproximationfortrappedfermigases
AT capuzzip superfluidthomasfermiapproximationfortrappedfermigases
AT szybiszl superfluidthomasfermiapproximationfortrappedfermigases
_version_ 1769810142828691456