Superfluid Thomas - Fermi approximation for trapped fermi gases
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous syste...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Documento de conferencia publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
Aporte de: |
id |
paperaa:paper_17426588_v150_n3_p_Hernndez |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_17426588_v150_n3_p_Hernndez2023-06-12T16:50:58Z Superfluid Thomas - Fermi approximation for trapped fermi gases J. Phys. Conf. Ser. 2009;150(3) Hernndez, S. Capuzzi, P. Szybisz, L. Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 info:eu-repo/semantics/conferenceObject info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
spellingShingle |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation Hernndez, S. Capuzzi, P. Szybisz, L. Superfluid Thomas - Fermi approximation for trapped fermi gases |
topic_facet |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
description |
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. |
format |
Documento de conferencia Documento de conferencia publishedVersion |
author |
Hernndez, S. Capuzzi, P. Szybisz, L. |
author_facet |
Hernndez, S. Capuzzi, P. Szybisz, L. |
author_sort |
Hernndez, S. |
title |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_short |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_fullStr |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full_unstemmed |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_sort |
superfluid thomas - fermi approximation for trapped fermi gases |
publishDate |
2009 |
url |
http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
work_keys_str_mv |
AT hernndezs superfluidthomasfermiapproximationfortrappedfermigases AT capuzzip superfluidthomasfermiapproximationfortrappedfermigases AT szybiszl superfluidthomasfermiapproximationfortrappedfermigases |
_version_ |
1769810142828691456 |