Complete intersections in toric ideals

We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cattani, E., Curran, R., Dickenstein, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
Aporte de:
id todo:paper_00029939_v135_n2_p329_Cattani
record_format dspace
spelling todo:paper_00029939_v135_n2_p329_Cattani2023-10-03T13:55:10Z Complete intersections in toric ideals Cattani, E. Curran, R. Dickenstein, A. We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society. Fil:Cattani, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society.
format JOUR
author Cattani, E.
Curran, R.
Dickenstein, A.
spellingShingle Cattani, E.
Curran, R.
Dickenstein, A.
Complete intersections in toric ideals
author_facet Cattani, E.
Curran, R.
Dickenstein, A.
author_sort Cattani, E.
title Complete intersections in toric ideals
title_short Complete intersections in toric ideals
title_full Complete intersections in toric ideals
title_fullStr Complete intersections in toric ideals
title_full_unstemmed Complete intersections in toric ideals
title_sort complete intersections in toric ideals
url http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
work_keys_str_mv AT cattanie completeintersectionsintoricideals
AT curranr completeintersectionsintoricideals
AT dickensteina completeintersectionsintoricideals
_version_ 1807317250436235264