Classifying cantor sets by their fractal dimensions
In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their h-Hausdorff and h-packing measures, for the family of dimension functions h, and characterize this classification in terms of the underlying sequ...
Guardado en:
Autores principales: | Cabrelli, C.A., Hare, K.E., Molter, U.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v138_n11_p3965_Cabrelli |
Aporte de: |
Ejemplares similares
-
Classifying cantor sets by their fractal dimensions
por: Cabrelli, Carlos Alberto, et al.
Publicado: (2010) -
The sizes of rearrangements of cantor sets
por: Hare, K.E., et al. -
The sizes of rearrangements of cantor sets
por: Zuberman, Leandro
Publicado: (2013) -
Dimension functions of Cantor sets
por: Garcia, I., et al.
Publicado: (2007) -
Dimension functions of Cantor sets
por: Garcia, I., et al.