Nonlocal evolution problems in thin domains
In this paper, we consider parabolic nonlocal problems in thin domains. Fix Ω ⊂ RN1 × RN2 and consider uϵ be the solution to (Formula presented.) with initial condition u(0, x) = u0(x) and a kernel of the form Jϵ(x) = J(x1,ϵx2) with J non-singular. This corresponds (via a simple change of variables)...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00036811_v97_n12_p2059_Pereira |
Aporte de: |
id |
todo:paper_00036811_v97_n12_p2059_Pereira |
---|---|
record_format |
dspace |
spelling |
todo:paper_00036811_v97_n12_p2059_Pereira2023-10-03T13:56:31Z Nonlocal evolution problems in thin domains Pereira, M.C. Rossi, J.D. 45A05 45C05 45M05 asymptotic analysis Neumann problem nonlocal equations Thin domains In this paper, we consider parabolic nonlocal problems in thin domains. Fix Ω ⊂ RN1 × RN2 and consider uϵ be the solution to (Formula presented.) with initial condition u(0, x) = u0(x) and a kernel of the form Jϵ(x) = J(x1,ϵx2) with J non-singular. This corresponds (via a simple change of variables) to the usual nonlocal evolution problem (Formula presented.), in the thin domain (Formula presented.). Our main result says that there is a limit as (Formula presented.) of the solutions to our problem and that this limit, when we take its mean value in the (Formula presented.) -direction, is a solution to a limit nonlocal problem in the projected set Ω1 ⊂ RN1. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00036811_v97_n12_p2059_Pereira |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
45A05 45C05 45M05 asymptotic analysis Neumann problem nonlocal equations Thin domains |
spellingShingle |
45A05 45C05 45M05 asymptotic analysis Neumann problem nonlocal equations Thin domains Pereira, M.C. Rossi, J.D. Nonlocal evolution problems in thin domains |
topic_facet |
45A05 45C05 45M05 asymptotic analysis Neumann problem nonlocal equations Thin domains |
description |
In this paper, we consider parabolic nonlocal problems in thin domains. Fix Ω ⊂ RN1 × RN2 and consider uϵ be the solution to (Formula presented.) with initial condition u(0, x) = u0(x) and a kernel of the form Jϵ(x) = J(x1,ϵx2) with J non-singular. This corresponds (via a simple change of variables) to the usual nonlocal evolution problem (Formula presented.), in the thin domain (Formula presented.). Our main result says that there is a limit as (Formula presented.) of the solutions to our problem and that this limit, when we take its mean value in the (Formula presented.) -direction, is a solution to a limit nonlocal problem in the projected set Ω1 ⊂ RN1. © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. |
format |
JOUR |
author |
Pereira, M.C. Rossi, J.D. |
author_facet |
Pereira, M.C. Rossi, J.D. |
author_sort |
Pereira, M.C. |
title |
Nonlocal evolution problems in thin domains |
title_short |
Nonlocal evolution problems in thin domains |
title_full |
Nonlocal evolution problems in thin domains |
title_fullStr |
Nonlocal evolution problems in thin domains |
title_full_unstemmed |
Nonlocal evolution problems in thin domains |
title_sort |
nonlocal evolution problems in thin domains |
url |
http://hdl.handle.net/20.500.12110/paper_00036811_v97_n12_p2059_Pereira |
work_keys_str_mv |
AT pereiramc nonlocalevolutionproblemsinthindomains AT rossijd nonlocalevolutionproblemsinthindomains |
_version_ |
1807318096045670400 |