Eigenvalue homogenisation problem with indefinite weights

In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernandez Bonder, J., Pinasco, J.P., Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00049727_v93_n1_p113_FernandezBonder
Aporte de:
id todo:paper_00049727_v93_n1_p113_FernandezBonder
record_format dspace
spelling todo:paper_00049727_v93_n1_p113_FernandezBonder2023-10-03T14:03:12Z Eigenvalue homogenisation problem with indefinite weights Fernandez Bonder, J. Pinasco, J.P. Salort, A.M. eigenvalues homogenisation indefinite weights p-Laplace-type problems In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1. © 2015 Australian Mathematical Publishing Association Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00049727_v93_n1_p113_FernandezBonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic eigenvalues
homogenisation
indefinite weights
p-Laplace-type problems
spellingShingle eigenvalues
homogenisation
indefinite weights
p-Laplace-type problems
Fernandez Bonder, J.
Pinasco, J.P.
Salort, A.M.
Eigenvalue homogenisation problem with indefinite weights
topic_facet eigenvalues
homogenisation
indefinite weights
p-Laplace-type problems
description In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplaciantype operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of the limit problem when the average is positive for any k ≥ 1. © 2015 Australian Mathematical Publishing Association Inc.
format JOUR
author Fernandez Bonder, J.
Pinasco, J.P.
Salort, A.M.
author_facet Fernandez Bonder, J.
Pinasco, J.P.
Salort, A.M.
author_sort Fernandez Bonder, J.
title Eigenvalue homogenisation problem with indefinite weights
title_short Eigenvalue homogenisation problem with indefinite weights
title_full Eigenvalue homogenisation problem with indefinite weights
title_fullStr Eigenvalue homogenisation problem with indefinite weights
title_full_unstemmed Eigenvalue homogenisation problem with indefinite weights
title_sort eigenvalue homogenisation problem with indefinite weights
url http://hdl.handle.net/20.500.12110/paper_00049727_v93_n1_p113_FernandezBonder
work_keys_str_mv AT fernandezbonderj eigenvaluehomogenisationproblemwithindefiniteweights
AT pinascojp eigenvaluehomogenisationproblemwithindefiniteweights
AT salortam eigenvaluehomogenisationproblemwithindefiniteweights
_version_ 1807317114426490880