Quantum brownian motion
We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibri...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli |
Aporte de: |
id |
todo:paper_00207748_v36_n11_p2167_Gaioli |
---|---|
record_format |
dspace |
spelling |
todo:paper_00207748_v36_n11_p2167_Gaioli2023-10-03T14:19:43Z Quantum brownian motion Gaioli, F.H. Garcia-Alvarez, E.T. Guevara, J. We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibrium and give quantitative estimates of the Poincaré recurrence times. We study the behavior of the subsystem mean occupation number in the limit of a dense bath and compare it with the expected exponential decay law. Fil:Gaioli, F.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Garcia-Alvarez, E.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guevara, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibrium and give quantitative estimates of the Poincaré recurrence times. We study the behavior of the subsystem mean occupation number in the limit of a dense bath and compare it with the expected exponential decay law. |
format |
JOUR |
author |
Gaioli, F.H. Garcia-Alvarez, E.T. Guevara, J. |
spellingShingle |
Gaioli, F.H. Garcia-Alvarez, E.T. Guevara, J. Quantum brownian motion |
author_facet |
Gaioli, F.H. Garcia-Alvarez, E.T. Guevara, J. |
author_sort |
Gaioli, F.H. |
title |
Quantum brownian motion |
title_short |
Quantum brownian motion |
title_full |
Quantum brownian motion |
title_fullStr |
Quantum brownian motion |
title_full_unstemmed |
Quantum brownian motion |
title_sort |
quantum brownian motion |
url |
http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli |
work_keys_str_mv |
AT gaiolifh quantumbrownianmotion AT garciaalvarezet quantumbrownianmotion AT guevaraj quantumbrownianmotion |
_version_ |
1807319009975074816 |