Quantum brownian motion

We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gaioli, F.H., Garcia-Alvarez, E.T., Guevara, J.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli
Aporte de:
id todo:paper_00207748_v36_n11_p2167_Gaioli
record_format dspace
spelling todo:paper_00207748_v36_n11_p2167_Gaioli2023-10-03T14:19:43Z Quantum brownian motion Gaioli, F.H. Garcia-Alvarez, E.T. Guevara, J. We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibrium and give quantitative estimates of the Poincaré recurrence times. We study the behavior of the subsystem mean occupation number in the limit of a dense bath and compare it with the expected exponential decay law. Fil:Gaioli, F.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Garcia-Alvarez, E.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guevara, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We study the behavior of a subsystem (harmonic oscillator) in contact with a thermal reservoir (finite set of uncoupled harmonic oscillators). We solve exactly the eigenvalue problem and obtain the temporal evolution of the dynamical variables of interest. We show how the subsystem goes to equilibrium and give quantitative estimates of the Poincaré recurrence times. We study the behavior of the subsystem mean occupation number in the limit of a dense bath and compare it with the expected exponential decay law.
format JOUR
author Gaioli, F.H.
Garcia-Alvarez, E.T.
Guevara, J.
spellingShingle Gaioli, F.H.
Garcia-Alvarez, E.T.
Guevara, J.
Quantum brownian motion
author_facet Gaioli, F.H.
Garcia-Alvarez, E.T.
Guevara, J.
author_sort Gaioli, F.H.
title Quantum brownian motion
title_short Quantum brownian motion
title_full Quantum brownian motion
title_fullStr Quantum brownian motion
title_full_unstemmed Quantum brownian motion
title_sort quantum brownian motion
url http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2167_Gaioli
work_keys_str_mv AT gaiolifh quantumbrownianmotion
AT garciaalvarezet quantumbrownianmotion
AT guevaraj quantumbrownianmotion
_version_ 1807319009975074816