Decay estimates for nonlinear nonlocal diffusion problems in the whole space
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, (Formula presented.). We consider a kernel of the form K(x, y) = ψ(y-a(x)) + ψ(x-a(y)), where ψ is a bounded, nonnegative function supported in the unit ba...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00217670_v122_n1_p375_Ignat |
Aporte de: |
id |
todo:paper_00217670_v122_n1_p375_Ignat |
---|---|
record_format |
dspace |
spelling |
todo:paper_00217670_v122_n1_p375_Ignat2023-10-03T14:20:49Z Decay estimates for nonlinear nonlocal diffusion problems in the whole space Ignat, L.I. Pinasco, D. Rossi, J.D. San Antolin, A. In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, (Formula presented.). We consider a kernel of the form K(x, y) = ψ(y-a(x)) + ψ(x-a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form (Formula presented.). The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: (Formula presented.) Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ1,p 1/p as p→∞. © 2014 Hebrew University Magnes Press. Fil:Pinasco, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00217670_v122_n1_p375_Ignat |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, (Formula presented.). We consider a kernel of the form K(x, y) = ψ(y-a(x)) + ψ(x-a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form (Formula presented.). The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: (Formula presented.) Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ1,p 1/p as p→∞. © 2014 Hebrew University Magnes Press. |
format |
JOUR |
author |
Ignat, L.I. Pinasco, D. Rossi, J.D. San Antolin, A. |
spellingShingle |
Ignat, L.I. Pinasco, D. Rossi, J.D. San Antolin, A. Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
author_facet |
Ignat, L.I. Pinasco, D. Rossi, J.D. San Antolin, A. |
author_sort |
Ignat, L.I. |
title |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_short |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_full |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_fullStr |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_full_unstemmed |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_sort |
decay estimates for nonlinear nonlocal diffusion problems in the whole space |
url |
http://hdl.handle.net/20.500.12110/paper_00217670_v122_n1_p375_Ignat |
work_keys_str_mv |
AT ignatli decayestimatesfornonlinearnonlocaldiffusionproblemsinthewholespace AT pinascod decayestimatesfornonlinearnonlocaldiffusionproblemsinthewholespace AT rossijd decayestimatesfornonlinearnonlocaldiffusionproblemsinthewholespace AT sanantolina decayestimatesfornonlinearnonlocaldiffusionproblemsinthewholespace |
_version_ |
1807320635698839552 |