Trivial central extensions of Lie bialgebras
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati |
Aporte de: |
id |
todo:paper_00218693_v390_n_p56_Farinati |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v390_n_p56_Farinati2023-10-03T14:21:31Z Trivial central extensions of Lie bialgebras Farinati, M.A. Jancsa, A.P. Derivations Extensions Lie bialgebras From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Derivations Extensions Lie bialgebras |
spellingShingle |
Derivations Extensions Lie bialgebras Farinati, M.A. Jancsa, A.P. Trivial central extensions of Lie bialgebras |
topic_facet |
Derivations Extensions Lie bialgebras |
description |
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. |
format |
JOUR |
author |
Farinati, M.A. Jancsa, A.P. |
author_facet |
Farinati, M.A. Jancsa, A.P. |
author_sort |
Farinati, M.A. |
title |
Trivial central extensions of Lie bialgebras |
title_short |
Trivial central extensions of Lie bialgebras |
title_full |
Trivial central extensions of Lie bialgebras |
title_fullStr |
Trivial central extensions of Lie bialgebras |
title_full_unstemmed |
Trivial central extensions of Lie bialgebras |
title_sort |
trivial central extensions of lie bialgebras |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati |
work_keys_str_mv |
AT farinatima trivialcentralextensionsofliebialgebras AT jancsaap trivialcentralextensionsofliebialgebras |
_version_ |
1807324406233432064 |