The Dixmier Conjecture and the shape of possible counterexamples
We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione |
Aporte de: |
id |
todo:paper_00218693_v399_n_p581_Guccione |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v399_n_p581_Guccione2023-10-03T14:21:31Z The Dixmier Conjecture and the shape of possible counterexamples Guccione, J.A. Guccione, J.J. Valqui, C. Dixmier Conjecture Weyl algebra We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Dixmier Conjecture Weyl algebra |
spellingShingle |
Dixmier Conjecture Weyl algebra Guccione, J.A. Guccione, J.J. Valqui, C. The Dixmier Conjecture and the shape of possible counterexamples |
topic_facet |
Dixmier Conjecture Weyl algebra |
description |
We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc. |
format |
JOUR |
author |
Guccione, J.A. Guccione, J.J. Valqui, C. |
author_facet |
Guccione, J.A. Guccione, J.J. Valqui, C. |
author_sort |
Guccione, J.A. |
title |
The Dixmier Conjecture and the shape of possible counterexamples |
title_short |
The Dixmier Conjecture and the shape of possible counterexamples |
title_full |
The Dixmier Conjecture and the shape of possible counterexamples |
title_fullStr |
The Dixmier Conjecture and the shape of possible counterexamples |
title_full_unstemmed |
The Dixmier Conjecture and the shape of possible counterexamples |
title_sort |
dixmier conjecture and the shape of possible counterexamples |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione |
work_keys_str_mv |
AT guccioneja thedixmierconjectureandtheshapeofpossiblecounterexamples AT guccionejj thedixmierconjectureandtheshapeofpossiblecounterexamples AT valquic thedixmierconjectureandtheshapeofpossiblecounterexamples AT guccioneja dixmierconjectureandtheshapeofpossiblecounterexamples AT guccionejj dixmierconjectureandtheshapeofpossiblecounterexamples AT valquic dixmierconjectureandtheshapeofpossiblecounterexamples |
_version_ |
1807320772900814848 |