The Dixmier Conjecture and the shape of possible counterexamples

We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.

Guardado en:
Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J., Valqui, C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione
Aporte de:
Descripción
Sumario:We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.