An optimization problem with volume constraint for a degenerate quasilinear operator

We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández Bonder, J., Martínez, S., Wolanski, N.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder
Aporte de:
id todo:paper_00220396_v227_n1_p80_FernandezBonder
record_format dspace
spelling todo:paper_00220396_v227_n1_p80_FernandezBonder2023-10-03T14:25:32Z An optimization problem with volume constraint for a degenerate quasilinear operator Fernández Bonder, J. Martínez, S. Wolanski, N. Free boundaries Optimal design problems We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Free boundaries
Optimal design problems
spellingShingle Free boundaries
Optimal design problems
Fernández Bonder, J.
Martínez, S.
Wolanski, N.
An optimization problem with volume constraint for a degenerate quasilinear operator
topic_facet Free boundaries
Optimal design problems
description We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.
format JOUR
author Fernández Bonder, J.
Martínez, S.
Wolanski, N.
author_facet Fernández Bonder, J.
Martínez, S.
Wolanski, N.
author_sort Fernández Bonder, J.
title An optimization problem with volume constraint for a degenerate quasilinear operator
title_short An optimization problem with volume constraint for a degenerate quasilinear operator
title_full An optimization problem with volume constraint for a degenerate quasilinear operator
title_fullStr An optimization problem with volume constraint for a degenerate quasilinear operator
title_full_unstemmed An optimization problem with volume constraint for a degenerate quasilinear operator
title_sort optimization problem with volume constraint for a degenerate quasilinear operator
url http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder
work_keys_str_mv AT fernandezbonderj anoptimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
AT martinezs anoptimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
AT wolanskin anoptimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
AT fernandezbonderj optimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
AT martinezs optimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
AT wolanskin optimizationproblemwithvolumeconstraintforadegeneratequasilinearoperator
_version_ 1807316194638692352