A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line

In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weigh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pinasco, J.P., Scarola, C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco
Aporte de:
id todo:paper_00220396_v261_n2_p1000_Pinasco
record_format dspace
spelling todo:paper_00220396_v261_n2_p1000_Pinasco2023-10-03T14:25:37Z A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line Pinasco, J.P. Scarola, C. Eigenvalues Inverse problems Nodal points P-Laplacian Singular problem In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight. © 2016 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
Inverse problems
Nodal points
P-Laplacian
Singular problem
spellingShingle Eigenvalues
Inverse problems
Nodal points
P-Laplacian
Singular problem
Pinasco, J.P.
Scarola, C.
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
topic_facet Eigenvalues
Inverse problems
Nodal points
P-Laplacian
Singular problem
description In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight. © 2016 Elsevier Inc.
format JOUR
author Pinasco, J.P.
Scarola, C.
author_facet Pinasco, J.P.
Scarola, C.
author_sort Pinasco, J.P.
title A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_short A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_full A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_fullStr A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_full_unstemmed A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_sort nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
url http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco
work_keys_str_mv AT pinascojp anodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline
AT scarolac anodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline
AT pinascojp nodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline
AT scarolac nodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline
_version_ 1807315190495051776