A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weigh...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco |
Aporte de: |
id |
todo:paper_00220396_v261_n2_p1000_Pinasco |
---|---|
record_format |
dspace |
spelling |
todo:paper_00220396_v261_n2_p1000_Pinasco2023-10-03T14:25:37Z A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line Pinasco, J.P. Scarola, C. Eigenvalues Inverse problems Nodal points P-Laplacian Singular problem In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight. © 2016 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues Inverse problems Nodal points P-Laplacian Singular problem |
spellingShingle |
Eigenvalues Inverse problems Nodal points P-Laplacian Singular problem Pinasco, J.P. Scarola, C. A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
topic_facet |
Eigenvalues Inverse problems Nodal points P-Laplacian Singular problem |
description |
In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight. © 2016 Elsevier Inc. |
format |
JOUR |
author |
Pinasco, J.P. Scarola, C. |
author_facet |
Pinasco, J.P. Scarola, C. |
author_sort |
Pinasco, J.P. |
title |
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
title_short |
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
title_full |
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
title_fullStr |
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
title_full_unstemmed |
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
title_sort |
nodal inverse problem for a quasi-linear ordinary differential equation in the half-line |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v261_n2_p1000_Pinasco |
work_keys_str_mv |
AT pinascojp anodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline AT scarolac anodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline AT pinascojp nodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline AT scarolac nodalinverseproblemforaquasilinearordinarydifferentialequationinthehalfline |
_version_ |
1807315190495051776 |