On algebras of holomorphic functions of a given type
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
Aporte de: |
id |
todo:paper_0022247X_v389_n2_p792_Muro |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v389_n2_p792_Muro2023-10-03T14:29:18Z On algebras of holomorphic functions of a given type Muro, S. Fréchet algebras Holomorphy types Polynomial ideals Riemann domains We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
spellingShingle |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains Muro, S. On algebras of holomorphic functions of a given type |
topic_facet |
Fréchet algebras Holomorphy types Polynomial ideals Riemann domains |
description |
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert-Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan-Thullen type theorem. © 2011 Elsevier Inc. |
format |
JOUR |
author |
Muro, S. |
author_facet |
Muro, S. |
author_sort |
Muro, S. |
title |
On algebras of holomorphic functions of a given type |
title_short |
On algebras of holomorphic functions of a given type |
title_full |
On algebras of holomorphic functions of a given type |
title_fullStr |
On algebras of holomorphic functions of a given type |
title_full_unstemmed |
On algebras of holomorphic functions of a given type |
title_sort |
on algebras of holomorphic functions of a given type |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v389_n2_p792_Muro |
work_keys_str_mv |
AT muros onalgebrasofholomorphicfunctionsofagiventype |
_version_ |
1807323995554447360 |