Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of so...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu |
Aporte de: |
id |
todo:paper_00222488_v59_n7_p_Mihailescu |
---|---|
record_format |
dspace |
spelling |
todo:paper_00222488_v59_n7_p_Mihailescu2023-10-03T14:29:52Z Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces Mihailescu, M. Pérez-Llanos, M. In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. © 2018 Author(s). JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. © 2018 Author(s). |
format |
JOUR |
author |
Mihailescu, M. Pérez-Llanos, M. |
spellingShingle |
Mihailescu, M. Pérez-Llanos, M. Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
author_facet |
Mihailescu, M. Pérez-Llanos, M. |
author_sort |
Mihailescu, M. |
title |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_short |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_full |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_fullStr |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_full_unstemmed |
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces |
title_sort |
inhomogeneous torsional creep problems in anisotropic orlicz sobolev spaces |
url |
http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu |
work_keys_str_mv |
AT mihailescum inhomogeneoustorsionalcreepproblemsinanisotropicorliczsobolevspaces AT perezllanosm inhomogeneoustorsionalcreepproblemsinanisotropicorliczsobolevspaces |
_version_ |
1807323403143610368 |