Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces

In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of so...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mihailescu, M., Pérez-Llanos, M.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu
Aporte de:
id todo:paper_00222488_v59_n7_p_Mihailescu
record_format dspace
spelling todo:paper_00222488_v59_n7_p_Mihailescu2023-10-03T14:29:52Z Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces Mihailescu, M. Pérez-Llanos, M. In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. © 2018 Author(s). JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In this paper, we study the asymptotic behavior of the sequence of solutions for a family of torsional creep-type problems, involving inhomogeneous and anisotropic differential operators, on a bounded domain, subject to the homogenous Dirichlet boundary condition. We find out that the sequence of solutions converges uniformly on the domain to a certain distance function defined in accordance with the anisotropy of the problem. In addition, we identify the limit problem via viscosity solution theory. © 2018 Author(s).
format JOUR
author Mihailescu, M.
Pérez-Llanos, M.
spellingShingle Mihailescu, M.
Pérez-Llanos, M.
Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
author_facet Mihailescu, M.
Pérez-Llanos, M.
author_sort Mihailescu, M.
title Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_short Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_full Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_fullStr Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_full_unstemmed Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces
title_sort inhomogeneous torsional creep problems in anisotropic orlicz sobolev spaces
url http://hdl.handle.net/20.500.12110/paper_00222488_v59_n7_p_Mihailescu
work_keys_str_mv AT mihailescum inhomogeneoustorsionalcreepproblemsinanisotropicorliczsobolevspaces
AT perezllanosm inhomogeneoustorsionalcreepproblemsinanisotropicorliczsobolevspaces
_version_ 1807323403143610368