Functions of least gradient and 1-harmonic functions
In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belongi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon |
Aporte de: |
id |
todo:paper_00222518_v63_n4_p1067_Mazon |
---|---|
record_format |
dspace |
spelling |
todo:paper_00222518_v63_n4_p1067_Mazon2023-10-03T14:29:55Z Functions of least gradient and 1-harmonic functions Mazón, J.M. Rossi, J.D. De León, S.S. 1-Laplacian Functions of least gradient In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belonging to L1 (∂ Ω). We show, as well, the non-uniqueness of solutions in the case of discontinuous boundary values. Indiana University Mathematics Journal © Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
1-Laplacian Functions of least gradient |
spellingShingle |
1-Laplacian Functions of least gradient Mazón, J.M. Rossi, J.D. De León, S.S. Functions of least gradient and 1-harmonic functions |
topic_facet |
1-Laplacian Functions of least gradient |
description |
In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belonging to L1 (∂ Ω). We show, as well, the non-uniqueness of solutions in the case of discontinuous boundary values. Indiana University Mathematics Journal © |
format |
JOUR |
author |
Mazón, J.M. Rossi, J.D. De León, S.S. |
author_facet |
Mazón, J.M. Rossi, J.D. De León, S.S. |
author_sort |
Mazón, J.M. |
title |
Functions of least gradient and 1-harmonic functions |
title_short |
Functions of least gradient and 1-harmonic functions |
title_full |
Functions of least gradient and 1-harmonic functions |
title_fullStr |
Functions of least gradient and 1-harmonic functions |
title_full_unstemmed |
Functions of least gradient and 1-harmonic functions |
title_sort |
functions of least gradient and 1-harmonic functions |
url |
http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon |
work_keys_str_mv |
AT mazonjm functionsofleastgradientand1harmonicfunctions AT rossijd functionsofleastgradientand1harmonicfunctions AT deleonss functionsofleastgradientand1harmonicfunctions |
_version_ |
1807318175257198592 |