Functions of least gradient and 1-harmonic functions

In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belongi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mazón, J.M., Rossi, J.D., De León, S.S.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon
Aporte de:
id todo:paper_00222518_v63_n4_p1067_Mazon
record_format dspace
spelling todo:paper_00222518_v63_n4_p1067_Mazon2023-10-03T14:29:55Z Functions of least gradient and 1-harmonic functions Mazón, J.M. Rossi, J.D. De León, S.S. 1-Laplacian Functions of least gradient In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belonging to L1 (∂ Ω). We show, as well, the non-uniqueness of solutions in the case of discontinuous boundary values. Indiana University Mathematics Journal © Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic 1-Laplacian
Functions of least gradient
spellingShingle 1-Laplacian
Functions of least gradient
Mazón, J.M.
Rossi, J.D.
De León, S.S.
Functions of least gradient and 1-harmonic functions
topic_facet 1-Laplacian
Functions of least gradient
description In this paper, we find the Euler-Lagrange equation corresponding to functions of least gradient. It turns out that this equation can be identified with the 1-Laplacian. Moreover, given a Lipschitz domain Ω, we prove that there exists a function of least gradient in Ω that extends every datum belonging to L1 (∂ Ω). We show, as well, the non-uniqueness of solutions in the case of discontinuous boundary values. Indiana University Mathematics Journal ©
format JOUR
author Mazón, J.M.
Rossi, J.D.
De León, S.S.
author_facet Mazón, J.M.
Rossi, J.D.
De León, S.S.
author_sort Mazón, J.M.
title Functions of least gradient and 1-harmonic functions
title_short Functions of least gradient and 1-harmonic functions
title_full Functions of least gradient and 1-harmonic functions
title_fullStr Functions of least gradient and 1-harmonic functions
title_full_unstemmed Functions of least gradient and 1-harmonic functions
title_sort functions of least gradient and 1-harmonic functions
url http://hdl.handle.net/20.500.12110/paper_00222518_v63_n4_p1067_Mazon
work_keys_str_mv AT mazonjm functionsofleastgradientand1harmonicfunctions
AT rossijd functionsofleastgradientand1harmonicfunctions
AT deleonss functionsofleastgradientand1harmonicfunctions
_version_ 1807318175257198592