Isomorphism conjectures with proper coefficients
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(-, E(A))...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00224049_v218_n7_p1224_Cortinas |
Aporte de: |
id |
todo:paper_00224049_v218_n7_p1224_Cortinas |
---|---|
record_format |
dspace |
spelling |
todo:paper_00224049_v218_n7_p1224_Cortinas2023-10-03T14:32:44Z Isomorphism conjectures with proper coefficients Cortiñas, G. Ellis, E. Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(-, E(A)) of G-simplicial sets such that H*G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, thenHG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C*-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context. © 2013 Elsevier B.V. Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v218_n7_p1224_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG(-, E(A)) of G-simplicial sets such that H*G(G/H,E(A))=E(A⋊H). The strong isomorphism conjecture for the quadruple (G,F,E,A) asserts that if X→Y is an equivariant map such that XH→YH is an equivalence for all H∈F, thenHG(X,E(A))→HG(Y,E(A)) is an equivalence. In this paper we introduce an algebraic notion of (G,F)-properness for G-rings, modeled on the analogous notion for G-C*-algebras, and show that the strong (G,F,E,P) isomorphism conjecture for (G,F)-proper P is true in several cases of interest in the algebraic K-theory context. © 2013 Elsevier B.V. |
format |
JOUR |
author |
Cortiñas, G. Ellis, E. |
spellingShingle |
Cortiñas, G. Ellis, E. Isomorphism conjectures with proper coefficients |
author_facet |
Cortiñas, G. Ellis, E. |
author_sort |
Cortiñas, G. |
title |
Isomorphism conjectures with proper coefficients |
title_short |
Isomorphism conjectures with proper coefficients |
title_full |
Isomorphism conjectures with proper coefficients |
title_fullStr |
Isomorphism conjectures with proper coefficients |
title_full_unstemmed |
Isomorphism conjectures with proper coefficients |
title_sort |
isomorphism conjectures with proper coefficients |
url |
http://hdl.handle.net/20.500.12110/paper_00224049_v218_n7_p1224_Cortinas |
work_keys_str_mv |
AT cortinasg isomorphismconjectureswithpropercoefficients AT ellise isomorphismconjectureswithpropercoefficients |
_version_ |
1807323640250761216 |