Theta lifts of Bianchi modular forms and applications to paramodularity
We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger |
Aporte de: |
id |
todo:paper_00246107_v92_n2_p353_Berger |
---|---|
record_format |
dspace |
spelling |
todo:paper_00246107_v92_n2_p353_Berger2023-10-03T14:35:17Z Theta lifts of Bianchi modular forms and applications to paramodularity Berger, T. Dembélé, L. Pacetti, A. Sengun, M.H. We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. 2015 London Mathematical Society. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. 2015 London Mathematical Society. |
format |
JOUR |
author |
Berger, T. Dembélé, L. Pacetti, A. Sengun, M.H. |
spellingShingle |
Berger, T. Dembélé, L. Pacetti, A. Sengun, M.H. Theta lifts of Bianchi modular forms and applications to paramodularity |
author_facet |
Berger, T. Dembélé, L. Pacetti, A. Sengun, M.H. |
author_sort |
Berger, T. |
title |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_short |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_full |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_fullStr |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_full_unstemmed |
Theta lifts of Bianchi modular forms and applications to paramodularity |
title_sort |
theta lifts of bianchi modular forms and applications to paramodularity |
url |
http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger |
work_keys_str_mv |
AT bergert thetaliftsofbianchimodularformsandapplicationstoparamodularity AT dembelel thetaliftsofbianchimodularformsandapplicationstoparamodularity AT pacettia thetaliftsofbianchimodularformsandapplicationstoparamodularity AT sengunmh thetaliftsofbianchimodularformsandapplicationstoparamodularity |
_version_ |
1807323047297810432 |