Theta lifts of Bianchi modular forms and applications to paramodularity

We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Berger, T., Dembélé, L., Pacetti, A., Sengun, M.H.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger
Aporte de:
id todo:paper_00246107_v92_n2_p353_Berger
record_format dspace
spelling todo:paper_00246107_v92_n2_p353_Berger2023-10-03T14:35:17Z Theta lifts of Bianchi modular forms and applications to paramodularity Berger, T. Dembélé, L. Pacetti, A. Sengun, M.H. We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. 2015 London Mathematical Society. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer. 2015 London Mathematical Society.
format JOUR
author Berger, T.
Dembélé, L.
Pacetti, A.
Sengun, M.H.
spellingShingle Berger, T.
Dembélé, L.
Pacetti, A.
Sengun, M.H.
Theta lifts of Bianchi modular forms and applications to paramodularity
author_facet Berger, T.
Dembélé, L.
Pacetti, A.
Sengun, M.H.
author_sort Berger, T.
title Theta lifts of Bianchi modular forms and applications to paramodularity
title_short Theta lifts of Bianchi modular forms and applications to paramodularity
title_full Theta lifts of Bianchi modular forms and applications to paramodularity
title_fullStr Theta lifts of Bianchi modular forms and applications to paramodularity
title_full_unstemmed Theta lifts of Bianchi modular forms and applications to paramodularity
title_sort theta lifts of bianchi modular forms and applications to paramodularity
url http://hdl.handle.net/20.500.12110/paper_00246107_v92_n2_p353_Berger
work_keys_str_mv AT bergert thetaliftsofbianchimodularformsandapplicationstoparamodularity
AT dembelel thetaliftsofbianchimodularformsandapplicationstoparamodularity
AT pacettia thetaliftsofbianchimodularformsandapplicationstoparamodularity
AT sengunmh thetaliftsofbianchimodularformsandapplicationstoparamodularity
_version_ 1807323047297810432