Proving modularity for a given elliptic curve over an imaginary quadratic field
We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a fa...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait |
Aporte de: |
id |
todo:paper_00255718_v79_n270_p1145_Dieulefait |
---|---|
record_format |
dspace |
spelling |
todo:paper_00255718_v79_n270_p1145_Dieulefait2023-10-03T14:36:12Z Proving modularity for a given elliptic curve over an imaginary quadratic field Dieulefait, L. Guerberoff, L. Pacetti, A. Elliptic curves modularity We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a family of compatible l-adic representations. Our algorithm is based on Faltings-Serre's method to prove that l-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. © 2009 American Mathematical Society. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Elliptic curves modularity |
spellingShingle |
Elliptic curves modularity Dieulefait, L. Guerberoff, L. Pacetti, A. Proving modularity for a given elliptic curve over an imaginary quadratic field |
topic_facet |
Elliptic curves modularity |
description |
We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a family of compatible l-adic representations. Our algorithm is based on Faltings-Serre's method to prove that l-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. © 2009 American Mathematical Society. |
format |
JOUR |
author |
Dieulefait, L. Guerberoff, L. Pacetti, A. |
author_facet |
Dieulefait, L. Guerberoff, L. Pacetti, A. |
author_sort |
Dieulefait, L. |
title |
Proving modularity for a given elliptic curve over an imaginary quadratic field |
title_short |
Proving modularity for a given elliptic curve over an imaginary quadratic field |
title_full |
Proving modularity for a given elliptic curve over an imaginary quadratic field |
title_fullStr |
Proving modularity for a given elliptic curve over an imaginary quadratic field |
title_full_unstemmed |
Proving modularity for a given elliptic curve over an imaginary quadratic field |
title_sort |
proving modularity for a given elliptic curve over an imaginary quadratic field |
url |
http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait |
work_keys_str_mv |
AT dieulefaitl provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield AT guerberoffl provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield AT pacettia provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield |
_version_ |
1807318735153790976 |