Proving modularity for a given elliptic curve over an imaginary quadratic field

We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a fa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dieulefait, L., Guerberoff, L., Pacetti, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait
Aporte de:
id todo:paper_00255718_v79_n270_p1145_Dieulefait
record_format dspace
spelling todo:paper_00255718_v79_n270_p1145_Dieulefait2023-10-03T14:36:12Z Proving modularity for a given elliptic curve over an imaginary quadratic field Dieulefait, L. Guerberoff, L. Pacetti, A. Elliptic curves modularity We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a family of compatible l-adic representations. Our algorithm is based on Faltings-Serre's method to prove that l-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. © 2009 American Mathematical Society. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Elliptic curves modularity
spellingShingle Elliptic curves modularity
Dieulefait, L.
Guerberoff, L.
Pacetti, A.
Proving modularity for a given elliptic curve over an imaginary quadratic field
topic_facet Elliptic curves modularity
description We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor, and Berger-Harcos, we can associate to an automorphic representation a family of compatible l-adic representations. Our algorithm is based on Faltings-Serre's method to prove that l-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. © 2009 American Mathematical Society.
format JOUR
author Dieulefait, L.
Guerberoff, L.
Pacetti, A.
author_facet Dieulefait, L.
Guerberoff, L.
Pacetti, A.
author_sort Dieulefait, L.
title Proving modularity for a given elliptic curve over an imaginary quadratic field
title_short Proving modularity for a given elliptic curve over an imaginary quadratic field
title_full Proving modularity for a given elliptic curve over an imaginary quadratic field
title_fullStr Proving modularity for a given elliptic curve over an imaginary quadratic field
title_full_unstemmed Proving modularity for a given elliptic curve over an imaginary quadratic field
title_sort proving modularity for a given elliptic curve over an imaginary quadratic field
url http://hdl.handle.net/20.500.12110/paper_00255718_v79_n270_p1145_Dieulefait
work_keys_str_mv AT dieulefaitl provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield
AT guerberoffl provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield
AT pacettia provingmodularityforagivenellipticcurveoveranimaginaryquadraticfield
_version_ 1807318735153790976