On the degrees of bases of free modules over a polynomial ring
Let k be an infinite field, A the polynomial ring k[x1 , . . . , xn] and F ∈ AN×M a matrix such that Im F ⊂ AN A-free (in particular, Quillen-Suslin Theorem implies that Ker F is also free). Let D be the maximum of the degrees of the entries of F and s the rank of F. We show that there exists a basi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255874_v231_n4_p679_Almeida |
Aporte de: |
id |
todo:paper_00255874_v231_n4_p679_Almeida |
---|---|
record_format |
dspace |
spelling |
todo:paper_00255874_v231_n4_p679_Almeida2023-10-03T14:36:22Z On the degrees of bases of free modules over a polynomial ring Almeida, M. D'Alfonso, L. Solerno, P. Let k be an infinite field, A the polynomial ring k[x1 , . . . , xn] and F ∈ AN×M a matrix such that Im F ⊂ AN A-free (in particular, Quillen-Suslin Theorem implies that Ker F is also free). Let D be the maximum of the degrees of the entries of F and s the rank of F. We show that there exists a basis {v1 , . . . , vM} of AM such that {v1 , . . . , vM-s} is a basis of Ker F, {F(vM-s+1), . . . , F(vM)} is a basis of Im F and the degrees of their coordinates are of order ((M - s)sD)O(n4). This result allows to obtain a single exponential degree upper bound for a basis of the coordinate ring of a reduced complete intersection variety in Noether position. Fil:Almeida, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solerno, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255874_v231_n4_p679_Almeida |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let k be an infinite field, A the polynomial ring k[x1 , . . . , xn] and F ∈ AN×M a matrix such that Im F ⊂ AN A-free (in particular, Quillen-Suslin Theorem implies that Ker F is also free). Let D be the maximum of the degrees of the entries of F and s the rank of F. We show that there exists a basis {v1 , . . . , vM} of AM such that {v1 , . . . , vM-s} is a basis of Ker F, {F(vM-s+1), . . . , F(vM)} is a basis of Im F and the degrees of their coordinates are of order ((M - s)sD)O(n4). This result allows to obtain a single exponential degree upper bound for a basis of the coordinate ring of a reduced complete intersection variety in Noether position. |
format |
JOUR |
author |
Almeida, M. D'Alfonso, L. Solerno, P. |
spellingShingle |
Almeida, M. D'Alfonso, L. Solerno, P. On the degrees of bases of free modules over a polynomial ring |
author_facet |
Almeida, M. D'Alfonso, L. Solerno, P. |
author_sort |
Almeida, M. |
title |
On the degrees of bases of free modules over a polynomial ring |
title_short |
On the degrees of bases of free modules over a polynomial ring |
title_full |
On the degrees of bases of free modules over a polynomial ring |
title_fullStr |
On the degrees of bases of free modules over a polynomial ring |
title_full_unstemmed |
On the degrees of bases of free modules over a polynomial ring |
title_sort |
on the degrees of bases of free modules over a polynomial ring |
url |
http://hdl.handle.net/20.500.12110/paper_00255874_v231_n4_p679_Almeida |
work_keys_str_mv |
AT almeidam onthedegreesofbasesoffreemodulesoverapolynomialring AT dalfonsol onthedegreesofbasesoffreemodulesoverapolynomialring AT solernop onthedegreesofbasesoffreemodulesoverapolynomialring |
_version_ |
1807317481841229824 |