Clustering for metric graphs using the p-Laplacian

We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L.M., Rossi, J.D.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo
Aporte de:
id todo:paper_00262285_v65_n3_p451_DelPezzo
record_format dspace
spelling todo:paper_00262285_v65_n3_p451_DelPezzo2023-10-03T14:36:53Z Clustering for metric graphs using the p-Laplacian Del Pezzo, L.M. Rossi, J.D. We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. © 2016 Project Euclid. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. © 2016 Project Euclid.
format JOUR
author Del Pezzo, L.M.
Rossi, J.D.
spellingShingle Del Pezzo, L.M.
Rossi, J.D.
Clustering for metric graphs using the p-Laplacian
author_facet Del Pezzo, L.M.
Rossi, J.D.
author_sort Del Pezzo, L.M.
title Clustering for metric graphs using the p-Laplacian
title_short Clustering for metric graphs using the p-Laplacian
title_full Clustering for metric graphs using the p-Laplacian
title_fullStr Clustering for metric graphs using the p-Laplacian
title_full_unstemmed Clustering for metric graphs using the p-Laplacian
title_sort clustering for metric graphs using the p-laplacian
url http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo
work_keys_str_mv AT delpezzolm clusteringformetricgraphsusingtheplaplacian
AT rossijd clusteringformetricgraphsusingtheplaplacian
_version_ 1807316756236075008