Clustering for metric graphs using the p-Laplacian
We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the g...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | JOUR |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo |
| Aporte de: |
| id |
todo:paper_00262285_v65_n3_p451_DelPezzo |
|---|---|
| record_format |
dspace |
| spelling |
todo:paper_00262285_v65_n3_p451_DelPezzo2023-10-03T14:36:53Z Clustering for metric graphs using the p-Laplacian Del Pezzo, L.M. Rossi, J.D. We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. © 2016 Project Euclid. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| description |
We deal with the clustering problem in a metric graph. We look for two clusters, and to this end, we study the first nonzero eigenvalue of the p Laplacian on a quantum graph with Newmann or Kirchoff boundary conditions on the nodes. Then, an associated eigenfunction up provides two sets inside the graph, {up > 0} and {up < 0}, which define the clusters. Moreover, we describe in detail the limit cases p→∞and p→1+. © 2016 Project Euclid. |
| format |
JOUR |
| author |
Del Pezzo, L.M. Rossi, J.D. |
| spellingShingle |
Del Pezzo, L.M. Rossi, J.D. Clustering for metric graphs using the p-Laplacian |
| author_facet |
Del Pezzo, L.M. Rossi, J.D. |
| author_sort |
Del Pezzo, L.M. |
| title |
Clustering for metric graphs using the p-Laplacian |
| title_short |
Clustering for metric graphs using the p-Laplacian |
| title_full |
Clustering for metric graphs using the p-Laplacian |
| title_fullStr |
Clustering for metric graphs using the p-Laplacian |
| title_full_unstemmed |
Clustering for metric graphs using the p-Laplacian |
| title_sort |
clustering for metric graphs using the p-laplacian |
| url |
http://hdl.handle.net/20.500.12110/paper_00262285_v65_n3_p451_DelPezzo |
| work_keys_str_mv |
AT delpezzolm clusteringformetricgraphsusingtheplaplacian AT rossijd clusteringformetricgraphsusingtheplaplacian |
| _version_ |
1807316756236075008 |