Finite element solution of incompressible fluid-structure vibration problems

In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bermúdez, A., Durán, R., Rodrĺguez, R.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
Aporte de:
id todo:paper_00295981_v40_n8_p1435_Bermudez
record_format dspace
spelling todo:paper_00295981_v40_n8_p1435_Bermudez2023-10-03T14:39:26Z Finite element solution of incompressible fluid-structure vibration problems Bermúdez, A. Durán, R. Rodrĺguez, R. Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd. Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
spellingShingle Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
Bermúdez, A.
Durán, R.
Rodrĺguez, R.
Finite element solution of incompressible fluid-structure vibration problems
topic_facet Finite elements
Fluid-structure
Hydroelasticity
Spectral problems
Spurious modes
Vibrations
Eigenvalues and eigenfunctions
Elasticity
Finite element method
Kinematics
Lagrange multipliers
Phase interfaces
Spectrum analysis
Vibrations (mechanical)
Displacement variables
Fluid solid interface
Incompressible fluid elastic structure
Linear triangular finite elements
Fluid structure interaction
finite element method
incompressible fluids
stream functions
description In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd.
format JOUR
author Bermúdez, A.
Durán, R.
Rodrĺguez, R.
author_facet Bermúdez, A.
Durán, R.
Rodrĺguez, R.
author_sort Bermúdez, A.
title Finite element solution of incompressible fluid-structure vibration problems
title_short Finite element solution of incompressible fluid-structure vibration problems
title_full Finite element solution of incompressible fluid-structure vibration problems
title_fullStr Finite element solution of incompressible fluid-structure vibration problems
title_full_unstemmed Finite element solution of incompressible fluid-structure vibration problems
title_sort finite element solution of incompressible fluid-structure vibration problems
url http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez
work_keys_str_mv AT bermudeza finiteelementsolutionofincompressiblefluidstructurevibrationproblems
AT duranr finiteelementsolutionofincompressiblefluidstructurevibrationproblems
AT rodrlguezr finiteelementsolutionofincompressiblefluidstructurevibrationproblems
_version_ 1807318948382769152