Finite element solution of incompressible fluid-structure vibration problems
In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez |
Aporte de: |
id |
todo:paper_00295981_v40_n8_p1435_Bermudez |
---|---|
record_format |
dspace |
spelling |
todo:paper_00295981_v40_n8_p1435_Bermudez2023-10-03T14:39:26Z Finite element solution of incompressible fluid-structure vibration problems Bermúdez, A. Durán, R. Rodrĺguez, R. Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd. Fil:Durán, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions |
spellingShingle |
Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions Bermúdez, A. Durán, R. Rodrĺguez, R. Finite element solution of incompressible fluid-structure vibration problems |
topic_facet |
Finite elements Fluid-structure Hydroelasticity Spectral problems Spurious modes Vibrations Eigenvalues and eigenfunctions Elasticity Finite element method Kinematics Lagrange multipliers Phase interfaces Spectrum analysis Vibrations (mechanical) Displacement variables Fluid solid interface Incompressible fluid elastic structure Linear triangular finite elements Fluid structure interaction finite element method incompressible fluids stream functions |
description |
In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd. |
format |
JOUR |
author |
Bermúdez, A. Durán, R. Rodrĺguez, R. |
author_facet |
Bermúdez, A. Durán, R. Rodrĺguez, R. |
author_sort |
Bermúdez, A. |
title |
Finite element solution of incompressible fluid-structure vibration problems |
title_short |
Finite element solution of incompressible fluid-structure vibration problems |
title_full |
Finite element solution of incompressible fluid-structure vibration problems |
title_fullStr |
Finite element solution of incompressible fluid-structure vibration problems |
title_full_unstemmed |
Finite element solution of incompressible fluid-structure vibration problems |
title_sort |
finite element solution of incompressible fluid-structure vibration problems |
url |
http://hdl.handle.net/20.500.12110/paper_00295981_v40_n8_p1435_Bermudez |
work_keys_str_mv |
AT bermudeza finiteelementsolutionofincompressiblefluidstructurevibrationproblems AT duranr finiteelementsolutionofincompressiblefluidstructurevibrationproblems AT rodrlguezr finiteelementsolutionofincompressiblefluidstructurevibrationproblems |
_version_ |
1807318948382769152 |