Perfect quantum error correcting code
We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the i...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme |
Aporte de: |
id |
todo:paper_00319007_v77_n1_p198_Laflamme |
---|---|
record_format |
dspace |
spelling |
todo:paper_00319007_v77_n1_p198_Laflamme2023-10-03T14:42:54Z Perfect quantum error correcting code Laflamme, R. Miquel, C. Paz, J.P. Zurek, W.H. We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the initial state with four extra qubits in the state |0⟩ to the encoded state. It can also be converted into a decoder by running it backward. The original state of the encoded qubit can then be restored by a simple unitary transformation. © 1996 The American Physical Society. Fil:Miquel, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the initial state with four extra qubits in the state |0⟩ to the encoded state. It can also be converted into a decoder by running it backward. The original state of the encoded qubit can then be restored by a simple unitary transformation. © 1996 The American Physical Society. |
format |
JOUR |
author |
Laflamme, R. Miquel, C. Paz, J.P. Zurek, W.H. |
spellingShingle |
Laflamme, R. Miquel, C. Paz, J.P. Zurek, W.H. Perfect quantum error correcting code |
author_facet |
Laflamme, R. Miquel, C. Paz, J.P. Zurek, W.H. |
author_sort |
Laflamme, R. |
title |
Perfect quantum error correcting code |
title_short |
Perfect quantum error correcting code |
title_full |
Perfect quantum error correcting code |
title_fullStr |
Perfect quantum error correcting code |
title_full_unstemmed |
Perfect quantum error correcting code |
title_sort |
perfect quantum error correcting code |
url |
http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme |
work_keys_str_mv |
AT laflammer perfectquantumerrorcorrectingcode AT miquelc perfectquantumerrorcorrectingcode AT pazjp perfectquantumerrorcorrectingcode AT zurekwh perfectquantumerrorcorrectingcode |
_version_ |
1807322454354296832 |