Perfect quantum error correcting code

We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme
Aporte de:
id todo:paper_00319007_v77_n1_p198_Laflamme
record_format dspace
spelling todo:paper_00319007_v77_n1_p198_Laflamme2023-10-03T14:42:54Z Perfect quantum error correcting code Laflamme, R. Miquel, C. Paz, J.P. Zurek, W.H. We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the initial state with four extra qubits in the state |0⟩ to the encoded state. It can also be converted into a decoder by running it backward. The original state of the encoded qubit can then be restored by a simple unitary transformation. © 1996 The American Physical Society. Fil:Miquel, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the initial state with four extra qubits in the state |0⟩ to the encoded state. It can also be converted into a decoder by running it backward. The original state of the encoded qubit can then be restored by a simple unitary transformation. © 1996 The American Physical Society.
format JOUR
author Laflamme, R.
Miquel, C.
Paz, J.P.
Zurek, W.H.
spellingShingle Laflamme, R.
Miquel, C.
Paz, J.P.
Zurek, W.H.
Perfect quantum error correcting code
author_facet Laflamme, R.
Miquel, C.
Paz, J.P.
Zurek, W.H.
author_sort Laflamme, R.
title Perfect quantum error correcting code
title_short Perfect quantum error correcting code
title_full Perfect quantum error correcting code
title_fullStr Perfect quantum error correcting code
title_full_unstemmed Perfect quantum error correcting code
title_sort perfect quantum error correcting code
url http://hdl.handle.net/20.500.12110/paper_00319007_v77_n1_p198_Laflamme
work_keys_str_mv AT laflammer perfectquantumerrorcorrectingcode
AT miquelc perfectquantumerrorcorrectingcode
AT pazjp perfectquantumerrorcorrectingcode
AT zurekwh perfectquantumerrorcorrectingcode
_version_ 1807322454354296832