A note on equivalence of means
Given a real interval I, a relation, denoted by '∼', is defined on the set of means on I x I by setting M ∼ N when there exists a surjective continuous function f solving the functional equation f(M(x,y)) = N(f (x),f(y)), x,y ∈ I . A surjective and continuous solution to this equation turn...
Guardado en:
Autores principales: | Berrone, L.R., Lombardi, A.L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00333883_v58_n1_p49_Berrone |
Aporte de: |
Ejemplares similares
-
A note on equivalence of means
por: Lombardi, Ariel L.
Publicado: (2001) -
Assessment of Pharmaceutical Equivalence: Difference Test or Equivalence Test?
por: Lourenço, Felipe R., et al.
Publicado: (2012) -
NONLINEAR MEAN-VALUE FORMULAS on FRACTAL SETS
Publicado: (2018) -
NONLINEAR MEAN-VALUE FORMULAS on FRACTAL SETS
por: Navarro, J.C., et al. -
Combinatorial equivalence of Chromatic Scheduling Polytopes
por: Marenco, J., et al.