Host galaxies of long gamma-ray bursts in the Millennium Simulation

In this work, we investigate the nature of the host galaxies of long gamma-ray bursts (LGRBs) using a galaxy catalogue constructed from the Millennium Simulation. We developed an LGRB synthetic model based on the hypothesis that these events originate at the end of the life of massive stars followin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chisari, N.E., Tissera, P.B., Pellizza, L.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00358711_v408_n1_p647_Chisari
Aporte de:
id todo:paper_00358711_v408_n1_p647_Chisari
record_format dspace
spelling todo:paper_00358711_v408_n1_p647_Chisari2023-10-03T14:46:58Z Host galaxies of long gamma-ray bursts in the Millennium Simulation Chisari, N.E. Tissera, P.B. Pellizza, L.J. Galaxies: evolution Galaxies: interactions Galaxies: star formation Gamma-rays: bursts In this work, we investigate the nature of the host galaxies of long gamma-ray bursts (LGRBs) using a galaxy catalogue constructed from the Millennium Simulation. We developed an LGRB synthetic model based on the hypothesis that these events originate at the end of the life of massive stars following the collapsar model, with the possibility of including a constraint on the metallicity of the progenitor star. A complete observability pipeline was designed to calculate a probability estimation for a galaxy to be observationally identified as a host for LGRBs detected by present observational facilities. This new tool allows us to build an observable host galaxy catalogue which is required to reproduce the current stellar mass distribution of observed hosts. This observability pipeline predicts that the minimum mass for the progenitor stars should be ~ 75 M. in order to be able to reproduce BATSE observations. Systems in our observable catalogue are able to reproduce the observed properties of host galaxies, namely stellar masses, colours, luminosity, star formation activity and metallicities as a function of redshift. At z > 2, our model predicts that the observable host galaxies would be very similar to the global galaxy population. We found that ~ 88 per cent of the observable host galaxies with mean gas metallicity lower than 0.6 Z. have stellar masses in the range 108.5-1010.3 M., in excellent agreement with observations. Interestingly in our model, observable host galaxies remain mainly within this mass range regardless of redshift, since lower stellar mass systems would have a low probability of being observed while more massive ones would be too metal-rich. Observable host galaxies are predicted to preferentially inhabit dark matter haloes in the range 1011-1011.5 M., with a weak dependence on redshift. They are also found to preferentially map different density environments at different stages of evolution of the Universe. At high redshifts, the observable host galaxies are predicted to be located in similar environments as the global galaxy population but have a slightly higher probability to have a close companion. © 2010 The Authors. Journal compilation © 2010 RAS. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00358711_v408_n1_p647_Chisari
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Galaxies: evolution
Galaxies: interactions
Galaxies: star formation
Gamma-rays: bursts
spellingShingle Galaxies: evolution
Galaxies: interactions
Galaxies: star formation
Gamma-rays: bursts
Chisari, N.E.
Tissera, P.B.
Pellizza, L.J.
Host galaxies of long gamma-ray bursts in the Millennium Simulation
topic_facet Galaxies: evolution
Galaxies: interactions
Galaxies: star formation
Gamma-rays: bursts
description In this work, we investigate the nature of the host galaxies of long gamma-ray bursts (LGRBs) using a galaxy catalogue constructed from the Millennium Simulation. We developed an LGRB synthetic model based on the hypothesis that these events originate at the end of the life of massive stars following the collapsar model, with the possibility of including a constraint on the metallicity of the progenitor star. A complete observability pipeline was designed to calculate a probability estimation for a galaxy to be observationally identified as a host for LGRBs detected by present observational facilities. This new tool allows us to build an observable host galaxy catalogue which is required to reproduce the current stellar mass distribution of observed hosts. This observability pipeline predicts that the minimum mass for the progenitor stars should be ~ 75 M. in order to be able to reproduce BATSE observations. Systems in our observable catalogue are able to reproduce the observed properties of host galaxies, namely stellar masses, colours, luminosity, star formation activity and metallicities as a function of redshift. At z > 2, our model predicts that the observable host galaxies would be very similar to the global galaxy population. We found that ~ 88 per cent of the observable host galaxies with mean gas metallicity lower than 0.6 Z. have stellar masses in the range 108.5-1010.3 M., in excellent agreement with observations. Interestingly in our model, observable host galaxies remain mainly within this mass range regardless of redshift, since lower stellar mass systems would have a low probability of being observed while more massive ones would be too metal-rich. Observable host galaxies are predicted to preferentially inhabit dark matter haloes in the range 1011-1011.5 M., with a weak dependence on redshift. They are also found to preferentially map different density environments at different stages of evolution of the Universe. At high redshifts, the observable host galaxies are predicted to be located in similar environments as the global galaxy population but have a slightly higher probability to have a close companion. © 2010 The Authors. Journal compilation © 2010 RAS.
format JOUR
author Chisari, N.E.
Tissera, P.B.
Pellizza, L.J.
author_facet Chisari, N.E.
Tissera, P.B.
Pellizza, L.J.
author_sort Chisari, N.E.
title Host galaxies of long gamma-ray bursts in the Millennium Simulation
title_short Host galaxies of long gamma-ray bursts in the Millennium Simulation
title_full Host galaxies of long gamma-ray bursts in the Millennium Simulation
title_fullStr Host galaxies of long gamma-ray bursts in the Millennium Simulation
title_full_unstemmed Host galaxies of long gamma-ray bursts in the Millennium Simulation
title_sort host galaxies of long gamma-ray bursts in the millennium simulation
url http://hdl.handle.net/20.500.12110/paper_00358711_v408_n1_p647_Chisari
work_keys_str_mv AT chisarine hostgalaxiesoflonggammarayburstsinthemillenniumsimulation
AT tisserapb hostgalaxiesoflonggammarayburstsinthemillenniumsimulation
AT pellizzalj hostgalaxiesoflonggammarayburstsinthemillenniumsimulation
_version_ 1807314471354368000