A fractional Laplace equation: Regularity of solutions and finite element approximations
This paper deals with the integral version of the Dirichlet homogeneous fractional Laplace equation. For this problem weighted and fractional Sobolev a priori estimates are provided in terms of the Holder regularity of the data. By relying on these results, optimal order of convergence for the stand...
Guardado en:
Autores principales: | Acosta, G., Borthagaray, J.P. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00361429_v55_n2_p472_Acosta |
Aporte de: |
Ejemplares similares
-
A fractional Laplace equation: Regularity of solutions and finite element approximations
Publicado: (2017) -
Finite Element Approximation for the Fractional Eigenvalue Problem
por: Borthagaray, J.P., et al. -
Finite Element Approximation for the Fractional Eigenvalue Problem
Publicado: (2018) -
Supercloseness on graded meshes for Q1 finite element approximation of a reaction-diffusion equation
por: Duran, Ricardo Guillermo, et al.
Publicado: (2013) -
Supercloseness on graded meshes for Q1 finite element approximation of a reaction-diffusion equation
por: Durán, R.G., et al.