Spatial characterization of a flare using radio observations and magnetic field topology

Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active regio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cristiani, G., Martinez, G., Mandrini, C.H., Giménez De Castro, C.G., Da Silva, C.W., Rovira, M.G., Kaufmann, P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00380938_v240_n2_p271_Cristiani
Aporte de:
id todo:paper_00380938_v240_n2_p271_Cristiani
record_format dspace
spelling todo:paper_00380938_v240_n2_p271_Cristiani2023-10-03T14:48:36Z Spatial characterization of a flare using radio observations and magnetic field topology Cristiani, G. Martinez, G. Mandrini, C.H. Giménez De Castro, C.G. Da Silva, C.W. Rovira, M.G. Kaufmann, P. Association with flares Dynamic spectrum Flares Magnetic reconnection Observational signatures Radio burst Relation to magnetic field Surges Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. © Springer 2007. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00380938_v240_n2_p271_Cristiani
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Association with flares
Dynamic spectrum
Flares
Magnetic reconnection
Observational signatures
Radio burst
Relation to magnetic field
Surges
spellingShingle Association with flares
Dynamic spectrum
Flares
Magnetic reconnection
Observational signatures
Radio burst
Relation to magnetic field
Surges
Cristiani, G.
Martinez, G.
Mandrini, C.H.
Giménez De Castro, C.G.
Da Silva, C.W.
Rovira, M.G.
Kaufmann, P.
Spatial characterization of a flare using radio observations and magnetic field topology
topic_facet Association with flares
Dynamic spectrum
Flares
Magnetic reconnection
Observational signatures
Radio burst
Relation to magnetic field
Surges
description Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. © Springer 2007.
format JOUR
author Cristiani, G.
Martinez, G.
Mandrini, C.H.
Giménez De Castro, C.G.
Da Silva, C.W.
Rovira, M.G.
Kaufmann, P.
author_facet Cristiani, G.
Martinez, G.
Mandrini, C.H.
Giménez De Castro, C.G.
Da Silva, C.W.
Rovira, M.G.
Kaufmann, P.
author_sort Cristiani, G.
title Spatial characterization of a flare using radio observations and magnetic field topology
title_short Spatial characterization of a flare using radio observations and magnetic field topology
title_full Spatial characterization of a flare using radio observations and magnetic field topology
title_fullStr Spatial characterization of a flare using radio observations and magnetic field topology
title_full_unstemmed Spatial characterization of a flare using radio observations and magnetic field topology
title_sort spatial characterization of a flare using radio observations and magnetic field topology
url http://hdl.handle.net/20.500.12110/paper_00380938_v240_n2_p271_Cristiani
work_keys_str_mv AT cristianig spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT martinezg spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT mandrinich spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT gimenezdecastrocg spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT dasilvacw spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT roviramg spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
AT kaufmannp spatialcharacterizationofaflareusingradioobservationsandmagneticfieldtopology
_version_ 1807321659010449408