Ergodic properties of linear operators

Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1.

Guardado en:
Detalles Bibliográficos
Autor principal: Becker, M.E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00416932_v52_n1_p23_Becker
Aporte de:
id todo:paper_00416932_v52_n1_p23_Becker
record_format dspace
spelling todo:paper_00416932_v52_n1_p23_Becker2023-10-03T14:51:19Z Ergodic properties of linear operators Becker, M.E. Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1. Fil:Becker, M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00416932_v52_n1_p23_Becker
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1.
format JOUR
author Becker, M.E.
spellingShingle Becker, M.E.
Ergodic properties of linear operators
author_facet Becker, M.E.
author_sort Becker, M.E.
title Ergodic properties of linear operators
title_short Ergodic properties of linear operators
title_full Ergodic properties of linear operators
title_fullStr Ergodic properties of linear operators
title_full_unstemmed Ergodic properties of linear operators
title_sort ergodic properties of linear operators
url http://hdl.handle.net/20.500.12110/paper_00416932_v52_n1_p23_Becker
work_keys_str_mv AT beckerme ergodicpropertiesoflinearoperators
_version_ 1807322814457315328