Relative cyclic homology of square zero extensions
Let k be a characteristic zero field, C a k-algebra and M a square zero two sided ideal of C. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of C relative to M. This complex resembles the canonical reduced mixed complex of an augmented alge...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00754102_v_n600_p51_Guccione |
Aporte de: |
id |
todo:paper_00754102_v_n600_p51_Guccione |
---|---|
record_format |
dspace |
spelling |
todo:paper_00754102_v_n600_p51_Guccione2023-10-03T14:53:56Z Relative cyclic homology of square zero extensions Guccione, J.A. Guccione, J.J. Let k be a characteristic zero field, C a k-algebra and M a square zero two sided ideal of C. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of C relative to M. This complex resembles the canonical reduced mixed complex of an augmented algebra. We begin the study of our complex showing that it has a harmonic decomposition like to the one considered by Cuntz and Quillen for the normalized mixed complex of an algebra. We also give new proofs of two theorems of Goodwillie, obtaining a light improvement of one of them. © Walter de Gruyter 2006. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00754102_v_n600_p51_Guccione |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let k be a characteristic zero field, C a k-algebra and M a square zero two sided ideal of C. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of C relative to M. This complex resembles the canonical reduced mixed complex of an augmented algebra. We begin the study of our complex showing that it has a harmonic decomposition like to the one considered by Cuntz and Quillen for the normalized mixed complex of an algebra. We also give new proofs of two theorems of Goodwillie, obtaining a light improvement of one of them. © Walter de Gruyter 2006. |
format |
JOUR |
author |
Guccione, J.A. Guccione, J.J. |
spellingShingle |
Guccione, J.A. Guccione, J.J. Relative cyclic homology of square zero extensions |
author_facet |
Guccione, J.A. Guccione, J.J. |
author_sort |
Guccione, J.A. |
title |
Relative cyclic homology of square zero extensions |
title_short |
Relative cyclic homology of square zero extensions |
title_full |
Relative cyclic homology of square zero extensions |
title_fullStr |
Relative cyclic homology of square zero extensions |
title_full_unstemmed |
Relative cyclic homology of square zero extensions |
title_sort |
relative cyclic homology of square zero extensions |
url |
http://hdl.handle.net/20.500.12110/paper_00754102_v_n600_p51_Guccione |
work_keys_str_mv |
AT guccioneja relativecyclichomologyofsquarezeroextensions AT guccionejj relativecyclichomologyofsquarezeroextensions |
_version_ |
1807319575379836928 |