A fractal Plancherel theorem
A measure μ on Rn is called locally and uniformly h-dimensional if μ(Br(x)) ≤ h(r) for all x ∈ Rn and for all 0 < r < 1, where h is a real valued function. If f ∈ L2(μ) and Fμf denotes its Fourier transform with respect to μ, it is not true (in general) that Fμf ∈ L2 (e.g. [10]). Howev...
Guardado en:
Autores principales: | Molter, U.M., Zuberman, L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01471937_v34_n1_p69_Molter |
Aporte de: |
Ejemplares similares
-
A fractal Plancherel theorem
Publicado: (2009) -
Hausdorff measure of p-Cantor sets
por: Cabrelli, C., et al. -
Classifying cantor sets by their fractal dimensions
por: Cabrelli, C.A., et al. -
Furstenberg sets for a fractal set of directions
por: Molter, U., et al. -
Estimaciones de dimensión para conjuntos de tipo Furstenberg y teoremas de restricción para medidas de Hausdorff
por: Rela, Ezequiel
Publicado: (2010)