Infinite-range quantum random Heisenberg magnet
We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quant...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea |
Aporte de: |
id |
todo:paper_01631829_v65_n22_p2244301_Arrachea |
---|---|
record_format |
dspace |
spelling |
todo:paper_01631829_v65_n22_p2244301_Arrachea2023-10-03T15:01:53Z Infinite-range quantum random Heisenberg magnet Arrachea, L. Rozenberg, M.J. glass acceleration article calculation magnet mathematical analysis model Monte Carlo method quantum mechanics We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response Χ″(ω,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM≈0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
glass acceleration article calculation magnet mathematical analysis model Monte Carlo method quantum mechanics |
spellingShingle |
glass acceleration article calculation magnet mathematical analysis model Monte Carlo method quantum mechanics Arrachea, L. Rozenberg, M.J. Infinite-range quantum random Heisenberg magnet |
topic_facet |
glass acceleration article calculation magnet mathematical analysis model Monte Carlo method quantum mechanics |
description |
We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature Tg for the spin-glass to paramagnetic transition. We obtain Tg≈0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response Χ″(ω,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM≈0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect. |
format |
JOUR |
author |
Arrachea, L. Rozenberg, M.J. |
author_facet |
Arrachea, L. Rozenberg, M.J. |
author_sort |
Arrachea, L. |
title |
Infinite-range quantum random Heisenberg magnet |
title_short |
Infinite-range quantum random Heisenberg magnet |
title_full |
Infinite-range quantum random Heisenberg magnet |
title_fullStr |
Infinite-range quantum random Heisenberg magnet |
title_full_unstemmed |
Infinite-range quantum random Heisenberg magnet |
title_sort |
infinite-range quantum random heisenberg magnet |
url |
http://hdl.handle.net/20.500.12110/paper_01631829_v65_n22_p2244301_Arrachea |
work_keys_str_mv |
AT arracheal infiniterangequantumrandomheisenbergmagnet AT rozenbergmj infiniterangequantumrandomheisenbergmagnet |
_version_ |
1807319372701630464 |