A posteriori error estimates for the finite element approximation of eigenvalue problems

This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Duran, R.G., Padra, C., Rodríguez, R.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
Aporte de:
id todo:paper_02182025_v13_n8_p1219_Duran
record_format dspace
spelling todo:paper_02182025_v13_n8_p1219_Duran2023-10-03T15:10:49Z A posteriori error estimates for the finite element approximation of eigenvalue problems Duran, R.G. Padra, C. Rodríguez, R. A posteriori error estimates Eigenvalue problems Finite elements This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems. Fil:Duran, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Padra, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A posteriori error estimates
Eigenvalue problems
Finite elements
spellingShingle A posteriori error estimates
Eigenvalue problems
Finite elements
Duran, R.G.
Padra, C.
Rodríguez, R.
A posteriori error estimates for the finite element approximation of eigenvalue problems
topic_facet A posteriori error estimates
Eigenvalue problems
Finite elements
description This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
format JOUR
author Duran, R.G.
Padra, C.
Rodríguez, R.
author_facet Duran, R.G.
Padra, C.
Rodríguez, R.
author_sort Duran, R.G.
title A posteriori error estimates for the finite element approximation of eigenvalue problems
title_short A posteriori error estimates for the finite element approximation of eigenvalue problems
title_full A posteriori error estimates for the finite element approximation of eigenvalue problems
title_fullStr A posteriori error estimates for the finite element approximation of eigenvalue problems
title_full_unstemmed A posteriori error estimates for the finite element approximation of eigenvalue problems
title_sort posteriori error estimates for the finite element approximation of eigenvalue problems
url http://hdl.handle.net/20.500.12110/paper_02182025_v13_n8_p1219_Duran
work_keys_str_mv AT duranrg aposteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT padrac aposteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT rodriguezr aposteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT duranrg posteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT padrac posteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
AT rodriguezr posteriorierrorestimatesforthefiniteelementapproximationofeigenvalueproblems
_version_ 1807318116340858880