An optimization problem related to the best Sobolev trace constant in thin domains
Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | JOUR |
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder |
| Aporte de: |
| id |
todo:paper_02191997_v10_n5_p633_Bonder |
|---|---|
| record_format |
dspace |
| spelling |
todo:paper_02191997_v10_n5_p633_Bonder2023-10-03T15:11:03Z An optimization problem related to the best Sobolev trace constant in thin domains Bonder, J.F. Rossi, J.D. SchÖnlieb, C.-B. Calculus of variations Optimal design Sobolev trace embedding Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for functions that verify u|A = 0. It is known that there exists an optimal hole that minimizes the best constant SA among subsets of Ω of the prescribed volume. In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain. © 2008 World Scientific Publishing Company. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Calculus of variations Optimal design Sobolev trace embedding |
| spellingShingle |
Calculus of variations Optimal design Sobolev trace embedding Bonder, J.F. Rossi, J.D. SchÖnlieb, C.-B. An optimization problem related to the best Sobolev trace constant in thin domains |
| topic_facet |
Calculus of variations Optimal design Sobolev trace embedding |
| description |
Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for functions that verify u|A = 0. It is known that there exists an optimal hole that minimizes the best constant SA among subsets of Ω of the prescribed volume. In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain. © 2008 World Scientific Publishing Company. |
| format |
JOUR |
| author |
Bonder, J.F. Rossi, J.D. SchÖnlieb, C.-B. |
| author_facet |
Bonder, J.F. Rossi, J.D. SchÖnlieb, C.-B. |
| author_sort |
Bonder, J.F. |
| title |
An optimization problem related to the best Sobolev trace constant in thin domains |
| title_short |
An optimization problem related to the best Sobolev trace constant in thin domains |
| title_full |
An optimization problem related to the best Sobolev trace constant in thin domains |
| title_fullStr |
An optimization problem related to the best Sobolev trace constant in thin domains |
| title_full_unstemmed |
An optimization problem related to the best Sobolev trace constant in thin domains |
| title_sort |
optimization problem related to the best sobolev trace constant in thin domains |
| url |
http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder |
| work_keys_str_mv |
AT bonderjf anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains AT rossijd anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains AT schonliebcb anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains AT bonderjf optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains AT rossijd optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains AT schonliebcb optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains |
| _version_ |
1807317199394701312 |