An optimization problem related to the best Sobolev trace constant in thin domains

Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonder, J.F., Rossi, J.D., SchÖnlieb, C.-B.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder
Aporte de:
id todo:paper_02191997_v10_n5_p633_Bonder
record_format dspace
spelling todo:paper_02191997_v10_n5_p633_Bonder2023-10-03T15:11:03Z An optimization problem related to the best Sobolev trace constant in thin domains Bonder, J.F. Rossi, J.D. SchÖnlieb, C.-B. Calculus of variations Optimal design Sobolev trace embedding Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for functions that verify u|A = 0. It is known that there exists an optimal hole that minimizes the best constant SA among subsets of Ω of the prescribed volume. In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain. © 2008 World Scientific Publishing Company. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Calculus of variations
Optimal design
Sobolev trace embedding
spellingShingle Calculus of variations
Optimal design
Sobolev trace embedding
Bonder, J.F.
Rossi, J.D.
SchÖnlieb, C.-B.
An optimization problem related to the best Sobolev trace constant in thin domains
topic_facet Calculus of variations
Optimal design
Sobolev trace embedding
description Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for functions that verify u|A = 0. It is known that there exists an optimal hole that minimizes the best constant SA among subsets of Ω of the prescribed volume. In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain. © 2008 World Scientific Publishing Company.
format JOUR
author Bonder, J.F.
Rossi, J.D.
SchÖnlieb, C.-B.
author_facet Bonder, J.F.
Rossi, J.D.
SchÖnlieb, C.-B.
author_sort Bonder, J.F.
title An optimization problem related to the best Sobolev trace constant in thin domains
title_short An optimization problem related to the best Sobolev trace constant in thin domains
title_full An optimization problem related to the best Sobolev trace constant in thin domains
title_fullStr An optimization problem related to the best Sobolev trace constant in thin domains
title_full_unstemmed An optimization problem related to the best Sobolev trace constant in thin domains
title_sort optimization problem related to the best sobolev trace constant in thin domains
url http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder
work_keys_str_mv AT bonderjf anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
AT rossijd anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
AT schonliebcb anoptimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
AT bonderjf optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
AT rossijd optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
AT schonliebcb optimizationproblemrelatedtothebestsobolevtraceconstantinthindomains
_version_ 1807317199394701312