An optimization problem related to the best Sobolev trace constant in thin domains
Let Ω ⊂ ℝN be a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) Rightwards arrow with hook sign Lq (∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem SA = inf||u||W 1,p(ω)p/||u||Lq(∂ω) for...
Guardado en:
Autores principales: | Bonder, J.F., Rossi, J.D., SchÖnlieb, C.-B. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02191997_v10_n5_p633_Bonder |
Aporte de: |
Ejemplares similares
-
An optimization problem related to the best Sobolev trace constant in thin domains
por: Rossi, Julio Daniel
Publicado: (2008) -
First variations of the best Sobolev trace constant with respect to the domain
por: Rossi, J.D. -
First variations of the best Sobolev trace constant with respect to the domain
por: Rossi, Julio Daniel
Publicado: (2008) -
The best Sobolev trace constant in domains with holes for critical or subcritical exponents
por: Fernandezbonder, J., et al.
Publicado: (2008) -
The best Sobolev trace constant in domains with holes for critical or subcritical exponents
por: Fernandezbonder, J., et al.