A geometrical bound for integer programming with polynomial constraints

Let F1, …, Fs ϵ Z[X1, …, Xn] be quasiconvex polynomials of degree bounded by d ≥ 2. Let L be an upper bound for the binary length of their coefficients. We show that the system F1 ≤ 0, …, Fs ≤ 0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bank, B., Krick, T., Mandel, R., Solernó, P., Budach L.
Formato: SER
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03029743_v529LNCS_n_p121_Bank
Aporte de:
id todo:paper_03029743_v529LNCS_n_p121_Bank
record_format dspace
spelling todo:paper_03029743_v529LNCS_n_p121_Bank2023-10-03T15:19:06Z A geometrical bound for integer programming with polynomial constraints Bank, B. Krick, T. Mandel, R. Solernó, P. Budach L. Bins Computation theory Integer solutions Minimization problems Quasiconvex polynomials Upper Bound Integer programming Let F1, …, Fs ϵ Z[X1, …, Xn] be quasiconvex polynomials of degree bounded by d ≥ 2. Let L be an upper bound for the binary length of their coefficients. We show that the system F1 ≤ 0, …, Fs ≤ 0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)cn · L. (Here c > 0 is a constant independent on s, d, n and L). We obtain a similar geometric bound for the corresponding minimization problem. The simply exponential feature of our bound is intrinsic to this problem. © Springer-Verlag Berlin Heidelberg 1991. SER info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03029743_v529LNCS_n_p121_Bank
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bins
Computation theory
Integer solutions
Minimization problems
Quasiconvex polynomials
Upper Bound
Integer programming
spellingShingle Bins
Computation theory
Integer solutions
Minimization problems
Quasiconvex polynomials
Upper Bound
Integer programming
Bank, B.
Krick, T.
Mandel, R.
Solernó, P.
Budach L.
A geometrical bound for integer programming with polynomial constraints
topic_facet Bins
Computation theory
Integer solutions
Minimization problems
Quasiconvex polynomials
Upper Bound
Integer programming
description Let F1, …, Fs ϵ Z[X1, …, Xn] be quasiconvex polynomials of degree bounded by d ≥ 2. Let L be an upper bound for the binary length of their coefficients. We show that the system F1 ≤ 0, …, Fs ≤ 0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)cn · L. (Here c > 0 is a constant independent on s, d, n and L). We obtain a similar geometric bound for the corresponding minimization problem. The simply exponential feature of our bound is intrinsic to this problem. © Springer-Verlag Berlin Heidelberg 1991.
format SER
author Bank, B.
Krick, T.
Mandel, R.
Solernó, P.
Budach L.
author_facet Bank, B.
Krick, T.
Mandel, R.
Solernó, P.
Budach L.
author_sort Bank, B.
title A geometrical bound for integer programming with polynomial constraints
title_short A geometrical bound for integer programming with polynomial constraints
title_full A geometrical bound for integer programming with polynomial constraints
title_fullStr A geometrical bound for integer programming with polynomial constraints
title_full_unstemmed A geometrical bound for integer programming with polynomial constraints
title_sort geometrical bound for integer programming with polynomial constraints
url http://hdl.handle.net/20.500.12110/paper_03029743_v529LNCS_n_p121_Bank
work_keys_str_mv AT bankb ageometricalboundforintegerprogrammingwithpolynomialconstraints
AT krickt ageometricalboundforintegerprogrammingwithpolynomialconstraints
AT mandelr ageometricalboundforintegerprogrammingwithpolynomialconstraints
AT solernop ageometricalboundforintegerprogrammingwithpolynomialconstraints
AT budachl ageometricalboundforintegerprogrammingwithpolynomialconstraints
AT bankb geometricalboundforintegerprogrammingwithpolynomialconstraints
AT krickt geometricalboundforintegerprogrammingwithpolynomialconstraints
AT mandelr geometricalboundforintegerprogrammingwithpolynomialconstraints
AT solernop geometricalboundforintegerprogrammingwithpolynomialconstraints
AT budachl geometricalboundforintegerprogrammingwithpolynomialconstraints
_version_ 1807315334882918400