On the computation of the radical of polynomial complete intersection ideals

This paper deals with the effective computation of the radical of certain polynomial ideals. Let k be a characteristic zero field, f1,…, fn−r ε k[X1,…, Xn] a regular sequence with d:=maxj deg fj, (Formula presented.) the generated ideal (Formula presented.) its radical, and suppose that the factor r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armendáriz, I., Solernó, P., Mora T., Cohen G., Giusti M.
Formato: SER
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03029743_v948_n_p106_Armendariz
Aporte de:
id todo:paper_03029743_v948_n_p106_Armendariz
record_format dspace
spelling todo:paper_03029743_v948_n_p106_Armendariz2023-10-03T15:19:41Z On the computation of the radical of polynomial complete intersection ideals Armendáriz, I. Solernó, P. Mora T. Cohen G. Giusti M. Artificial intelligence Computers Cohen-Macaulay Complete intersection Exponential algorithms Zero fields Algebra This paper deals with the effective computation of the radical of certain polynomial ideals. Let k be a characteristic zero field, f1,…, fn−r ε k[X1,…, Xn] a regular sequence with d:=maxj deg fj, (Formula presented.) the generated ideal (Formula presented.) its radical, and suppose that the factor ring (Formula presented.) is a Cohen-Macaulay ring. Under these assumptions we exhibit a single exponential algorithm which computes a system of generators of (Formula presented.). © Springer-Verlag Berlin Heidelberg 1995. SER info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03029743_v948_n_p106_Armendariz
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Artificial intelligence
Computers
Cohen-Macaulay
Complete intersection
Exponential algorithms
Zero fields
Algebra
spellingShingle Artificial intelligence
Computers
Cohen-Macaulay
Complete intersection
Exponential algorithms
Zero fields
Algebra
Armendáriz, I.
Solernó, P.
Mora T.
Cohen G.
Giusti M.
On the computation of the radical of polynomial complete intersection ideals
topic_facet Artificial intelligence
Computers
Cohen-Macaulay
Complete intersection
Exponential algorithms
Zero fields
Algebra
description This paper deals with the effective computation of the radical of certain polynomial ideals. Let k be a characteristic zero field, f1,…, fn−r ε k[X1,…, Xn] a regular sequence with d:=maxj deg fj, (Formula presented.) the generated ideal (Formula presented.) its radical, and suppose that the factor ring (Formula presented.) is a Cohen-Macaulay ring. Under these assumptions we exhibit a single exponential algorithm which computes a system of generators of (Formula presented.). © Springer-Verlag Berlin Heidelberg 1995.
format SER
author Armendáriz, I.
Solernó, P.
Mora T.
Cohen G.
Giusti M.
author_facet Armendáriz, I.
Solernó, P.
Mora T.
Cohen G.
Giusti M.
author_sort Armendáriz, I.
title On the computation of the radical of polynomial complete intersection ideals
title_short On the computation of the radical of polynomial complete intersection ideals
title_full On the computation of the radical of polynomial complete intersection ideals
title_fullStr On the computation of the radical of polynomial complete intersection ideals
title_full_unstemmed On the computation of the radical of polynomial complete intersection ideals
title_sort on the computation of the radical of polynomial complete intersection ideals
url http://hdl.handle.net/20.500.12110/paper_03029743_v948_n_p106_Armendariz
work_keys_str_mv AT armendarizi onthecomputationoftheradicalofpolynomialcompleteintersectionideals
AT solernop onthecomputationoftheradicalofpolynomialcompleteintersectionideals
AT morat onthecomputationoftheradicalofpolynomialcompleteintersectionideals
AT coheng onthecomputationoftheradicalofpolynomialcompleteintersectionideals
AT giustim onthecomputationoftheradicalofpolynomialcompleteintersectionideals
_version_ 1807321038626750464