Phase transition for the dilute clock model

We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in ℤd, for every q ≥ 2 and d ≥ 2. This follows from the fact that the Edwards-Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percola...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armendáriz, I., Ferrari, P.A., Soprano-Loto, N.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03044149_v125_n10_p3879_Armendariz
Aporte de:
id todo:paper_03044149_v125_n10_p3879_Armendariz
record_format dspace
spelling todo:paper_03044149_v125_n10_p3879_Armendariz2023-10-03T15:20:39Z Phase transition for the dilute clock model Armendáriz, I. Ferrari, P.A. Soprano-Loto, N. Dilute clock model Phase transition Clocks Percolation (solid state) Phase transitions Solvents Bernoulli Bond percolation Clock model Low temperatures Nearest neighbour Q state Random-cluster representations Supercritical Potts model We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in ℤd, for every q ≥ 2 and d ≥ 2. This follows from the fact that the Edwards-Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article. © 2015 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03044149_v125_n10_p3879_Armendariz
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Dilute clock model
Phase transition
Clocks
Percolation (solid state)
Phase transitions
Solvents
Bernoulli
Bond percolation
Clock model
Low temperatures
Nearest neighbour
Q state
Random-cluster representations
Supercritical
Potts model
spellingShingle Dilute clock model
Phase transition
Clocks
Percolation (solid state)
Phase transitions
Solvents
Bernoulli
Bond percolation
Clock model
Low temperatures
Nearest neighbour
Q state
Random-cluster representations
Supercritical
Potts model
Armendáriz, I.
Ferrari, P.A.
Soprano-Loto, N.
Phase transition for the dilute clock model
topic_facet Dilute clock model
Phase transition
Clocks
Percolation (solid state)
Phase transitions
Solvents
Bernoulli
Bond percolation
Clock model
Low temperatures
Nearest neighbour
Q state
Random-cluster representations
Supercritical
Potts model
description We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in ℤd, for every q ≥ 2 and d ≥ 2. This follows from the fact that the Edwards-Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article. © 2015 Elsevier B.V. All rights reserved.
format JOUR
author Armendáriz, I.
Ferrari, P.A.
Soprano-Loto, N.
author_facet Armendáriz, I.
Ferrari, P.A.
Soprano-Loto, N.
author_sort Armendáriz, I.
title Phase transition for the dilute clock model
title_short Phase transition for the dilute clock model
title_full Phase transition for the dilute clock model
title_fullStr Phase transition for the dilute clock model
title_full_unstemmed Phase transition for the dilute clock model
title_sort phase transition for the dilute clock model
url http://hdl.handle.net/20.500.12110/paper_03044149_v125_n10_p3879_Armendariz
work_keys_str_mv AT armendarizi phasetransitionforthediluteclockmodel
AT ferraripa phasetransitionforthediluteclockmodel
AT sopranoloton phasetransitionforthediluteclockmodel
_version_ 1807319237588418560