Geometric C 1+α regularity estimates for nonlinear evolution models

In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: da Silva, J.V.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva
Aporte de:
id todo:paper_0362546X_v184_n_p95_daSilva
record_format dspace
spelling todo:paper_0362546X_v184_n_p95_daSilva2023-10-03T15:27:11Z Geometric C 1+α regularity estimates for nonlinear evolution models da Silva, J.V. Geometric regularity estimates Intrinsic scaling techniques Nonlinear evolution models Mathematical techniques Nonlinear analysis Bounded solution Divergence form Geometric regularity Intrinsic scaling Nonlinear evolution models Oscillation mechanism Geometry In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechanisms combined with intrinsic scaling techniques. © 2019 Elsevier Ltd JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Geometric regularity estimates
Intrinsic scaling techniques
Nonlinear evolution models
Mathematical techniques
Nonlinear analysis
Bounded solution
Divergence form
Geometric regularity
Intrinsic scaling
Nonlinear evolution models
Oscillation mechanism
Geometry
spellingShingle Geometric regularity estimates
Intrinsic scaling techniques
Nonlinear evolution models
Mathematical techniques
Nonlinear analysis
Bounded solution
Divergence form
Geometric regularity
Intrinsic scaling
Nonlinear evolution models
Oscillation mechanism
Geometry
da Silva, J.V.
Geometric C 1+α regularity estimates for nonlinear evolution models
topic_facet Geometric regularity estimates
Intrinsic scaling techniques
Nonlinear evolution models
Mathematical techniques
Nonlinear analysis
Bounded solution
Divergence form
Geometric regularity
Intrinsic scaling
Nonlinear evolution models
Oscillation mechanism
Geometry
description In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechanisms combined with intrinsic scaling techniques. © 2019 Elsevier Ltd
format JOUR
author da Silva, J.V.
author_facet da Silva, J.V.
author_sort da Silva, J.V.
title Geometric C 1+α regularity estimates for nonlinear evolution models
title_short Geometric C 1+α regularity estimates for nonlinear evolution models
title_full Geometric C 1+α regularity estimates for nonlinear evolution models
title_fullStr Geometric C 1+α regularity estimates for nonlinear evolution models
title_full_unstemmed Geometric C 1+α regularity estimates for nonlinear evolution models
title_sort geometric c 1+α regularity estimates for nonlinear evolution models
url http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva
work_keys_str_mv AT dasilvajv geometricc1aregularityestimatesfornonlinearevolutionmodels
_version_ 1807316850530320384