Geometric C 1+α regularity estimates for nonlinear evolution models
In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechani...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva |
Aporte de: |
id |
todo:paper_0362546X_v184_n_p95_daSilva |
---|---|
record_format |
dspace |
spelling |
todo:paper_0362546X_v184_n_p95_daSilva2023-10-03T15:27:11Z Geometric C 1+α regularity estimates for nonlinear evolution models da Silva, J.V. Geometric regularity estimates Intrinsic scaling techniques Nonlinear evolution models Mathematical techniques Nonlinear analysis Bounded solution Divergence form Geometric regularity Intrinsic scaling Nonlinear evolution models Oscillation mechanism Geometry In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechanisms combined with intrinsic scaling techniques. © 2019 Elsevier Ltd JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Geometric regularity estimates Intrinsic scaling techniques Nonlinear evolution models Mathematical techniques Nonlinear analysis Bounded solution Divergence form Geometric regularity Intrinsic scaling Nonlinear evolution models Oscillation mechanism Geometry |
spellingShingle |
Geometric regularity estimates Intrinsic scaling techniques Nonlinear evolution models Mathematical techniques Nonlinear analysis Bounded solution Divergence form Geometric regularity Intrinsic scaling Nonlinear evolution models Oscillation mechanism Geometry da Silva, J.V. Geometric C 1+α regularity estimates for nonlinear evolution models |
topic_facet |
Geometric regularity estimates Intrinsic scaling techniques Nonlinear evolution models Mathematical techniques Nonlinear analysis Bounded solution Divergence form Geometric regularity Intrinsic scaling Nonlinear evolution models Oscillation mechanism Geometry |
description |
In this survey we establish geometric C 1+α regularity estimates for bounded solutions of a number of nonlinear evolution models in divergence and non-divergence form. The main insights to obtain such estimates are based on geometric tangential methods, and make use of systematic oscillation mechanisms combined with intrinsic scaling techniques. © 2019 Elsevier Ltd |
format |
JOUR |
author |
da Silva, J.V. |
author_facet |
da Silva, J.V. |
author_sort |
da Silva, J.V. |
title |
Geometric C 1+α regularity estimates for nonlinear evolution models |
title_short |
Geometric C 1+α regularity estimates for nonlinear evolution models |
title_full |
Geometric C 1+α regularity estimates for nonlinear evolution models |
title_fullStr |
Geometric C 1+α regularity estimates for nonlinear evolution models |
title_full_unstemmed |
Geometric C 1+α regularity estimates for nonlinear evolution models |
title_sort |
geometric c 1+α regularity estimates for nonlinear evolution models |
url |
http://hdl.handle.net/20.500.12110/paper_0362546X_v184_n_p95_daSilva |
work_keys_str_mv |
AT dasilvajv geometricc1aregularityestimatesfornonlinearevolutionmodels |
_version_ |
1807316850530320384 |