Stability of periodic nonlinear Schrödinger equation

In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Borgna, J.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna
Aporte de:
id todo:paper_0362546X_v69_n12_p4252_Borgna
record_format dspace
spelling todo:paper_0362546X_v69_n12_p4252_Borgna2023-10-03T15:27:20Z Stability of periodic nonlinear Schrödinger equation Borgna, J.P. Ground states existence Orbital stability Perturbation method Ground state Dinger equations Ground states existence Nonlinear Orbital stability Periodic Perturbation method Potential parameters Steady states Nonlinear equations In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights reserved. Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Ground states existence
Orbital stability
Perturbation method
Ground state
Dinger equations
Ground states existence
Nonlinear
Orbital stability
Periodic
Perturbation method
Potential parameters
Steady states
Nonlinear equations
spellingShingle Ground states existence
Orbital stability
Perturbation method
Ground state
Dinger equations
Ground states existence
Nonlinear
Orbital stability
Periodic
Perturbation method
Potential parameters
Steady states
Nonlinear equations
Borgna, J.P.
Stability of periodic nonlinear Schrödinger equation
topic_facet Ground states existence
Orbital stability
Perturbation method
Ground state
Dinger equations
Ground states existence
Nonlinear
Orbital stability
Periodic
Perturbation method
Potential parameters
Steady states
Nonlinear equations
description In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights reserved.
format JOUR
author Borgna, J.P.
author_facet Borgna, J.P.
author_sort Borgna, J.P.
title Stability of periodic nonlinear Schrödinger equation
title_short Stability of periodic nonlinear Schrödinger equation
title_full Stability of periodic nonlinear Schrödinger equation
title_fullStr Stability of periodic nonlinear Schrödinger equation
title_full_unstemmed Stability of periodic nonlinear Schrödinger equation
title_sort stability of periodic nonlinear schrödinger equation
url http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna
work_keys_str_mv AT borgnajp stabilityofperiodicnonlinearschrodingerequation
_version_ 1807316351293849600