Stability of periodic nonlinear Schrödinger equation
In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna |
Aporte de: |
id |
todo:paper_0362546X_v69_n12_p4252_Borgna |
---|---|
record_format |
dspace |
spelling |
todo:paper_0362546X_v69_n12_p4252_Borgna2023-10-03T15:27:20Z Stability of periodic nonlinear Schrödinger equation Borgna, J.P. Ground states existence Orbital stability Perturbation method Ground state Dinger equations Ground states existence Nonlinear Orbital stability Periodic Perturbation method Potential parameters Steady states Nonlinear equations In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights reserved. Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Ground states existence Orbital stability Perturbation method Ground state Dinger equations Ground states existence Nonlinear Orbital stability Periodic Perturbation method Potential parameters Steady states Nonlinear equations |
spellingShingle |
Ground states existence Orbital stability Perturbation method Ground state Dinger equations Ground states existence Nonlinear Orbital stability Periodic Perturbation method Potential parameters Steady states Nonlinear equations Borgna, J.P. Stability of periodic nonlinear Schrödinger equation |
topic_facet |
Ground states existence Orbital stability Perturbation method Ground state Dinger equations Ground states existence Nonlinear Orbital stability Periodic Perturbation method Potential parameters Steady states Nonlinear equations |
description |
In this manuscript, we study the existence of steady states of the periodic nonlinear Schrödinger equation in dimension one and we prove the stability of the solutions with initial data close to the ground state profile, when the potential parameter σ is small enough. © 2007 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
Borgna, J.P. |
author_facet |
Borgna, J.P. |
author_sort |
Borgna, J.P. |
title |
Stability of periodic nonlinear Schrödinger equation |
title_short |
Stability of periodic nonlinear Schrödinger equation |
title_full |
Stability of periodic nonlinear Schrödinger equation |
title_fullStr |
Stability of periodic nonlinear Schrödinger equation |
title_full_unstemmed |
Stability of periodic nonlinear Schrödinger equation |
title_sort |
stability of periodic nonlinear schrödinger equation |
url |
http://hdl.handle.net/20.500.12110/paper_0362546X_v69_n12_p4252_Borgna |
work_keys_str_mv |
AT borgnajp stabilityofperiodicnonlinearschrodingerequation |
_version_ |
1807316351293849600 |