A free boundary problem for the p (x)-Laplacian
We consider the optimization problem of minimizing ∫ Ω frac(1, p (x)) | ∇ u | p (x) + λ (x) χ {u > 0} d x in the class of functions W 1, p ({dot operator}) (Ω) with u - φ 0 ∈ W 0 1, p ({dot operator}) (Ω), for a given φ 0 ≥ 0 and bounded. W 1, p ({dot operator}) (Ω) is the class of weakly dif...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n2_p1078_Bonder |
Aporte de: |
id |
todo:paper_0362546X_v72_n2_p1078_Bonder |
---|---|
record_format |
dspace |
spelling |
todo:paper_0362546X_v72_n2_p1078_Bonder2023-10-03T15:27:22Z A free boundary problem for the p (x)-Laplacian Bonder, J.F. Martínez, S. Wolanski, N. Free boundaries Minimization Variable exponent spaces Differentiable functions Free boundary Free-boundary problems Lipschitz continuous Optimization problems P (x)-Laplacian Regular surfaces Optimization We consider the optimization problem of minimizing ∫ Ω frac(1, p (x)) | ∇ u | p (x) + λ (x) χ {u > 0} d x in the class of functions W 1, p ({dot operator}) (Ω) with u - φ 0 ∈ W 0 1, p ({dot operator}) (Ω), for a given φ 0 ≥ 0 and bounded. W 1, p ({dot operator}) (Ω) is the class of weakly differentiable functions with ∫ Ω | ∇ u | p (x) d x < ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. © 2009 Elsevier Ltd. All rights reserved. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n2_p1078_Bonder |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Free boundaries Minimization Variable exponent spaces Differentiable functions Free boundary Free-boundary problems Lipschitz continuous Optimization problems P (x)-Laplacian Regular surfaces Optimization |
spellingShingle |
Free boundaries Minimization Variable exponent spaces Differentiable functions Free boundary Free-boundary problems Lipschitz continuous Optimization problems P (x)-Laplacian Regular surfaces Optimization Bonder, J.F. Martínez, S. Wolanski, N. A free boundary problem for the p (x)-Laplacian |
topic_facet |
Free boundaries Minimization Variable exponent spaces Differentiable functions Free boundary Free-boundary problems Lipschitz continuous Optimization problems P (x)-Laplacian Regular surfaces Optimization |
description |
We consider the optimization problem of minimizing ∫ Ω frac(1, p (x)) | ∇ u | p (x) + λ (x) χ {u > 0} d x in the class of functions W 1, p ({dot operator}) (Ω) with u - φ 0 ∈ W 0 1, p ({dot operator}) (Ω), for a given φ 0 ≥ 0 and bounded. W 1, p ({dot operator}) (Ω) is the class of weakly differentiable functions with ∫ Ω | ∇ u | p (x) d x < ∞. We prove that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω ∩ ∂ {u > 0}, is a regular surface. © 2009 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
Bonder, J.F. Martínez, S. Wolanski, N. |
author_facet |
Bonder, J.F. Martínez, S. Wolanski, N. |
author_sort |
Bonder, J.F. |
title |
A free boundary problem for the p (x)-Laplacian |
title_short |
A free boundary problem for the p (x)-Laplacian |
title_full |
A free boundary problem for the p (x)-Laplacian |
title_fullStr |
A free boundary problem for the p (x)-Laplacian |
title_full_unstemmed |
A free boundary problem for the p (x)-Laplacian |
title_sort |
free boundary problem for the p (x)-laplacian |
url |
http://hdl.handle.net/20.500.12110/paper_0362546X_v72_n2_p1078_Bonder |
work_keys_str_mv |
AT bonderjf afreeboundaryproblemforthepxlaplacian AT martinezs afreeboundaryproblemforthepxlaplacian AT wolanskin afreeboundaryproblemforthepxlaplacian AT bonderjf freeboundaryproblemforthepxlaplacian AT martinezs freeboundaryproblemforthepxlaplacian AT wolanskin freeboundaryproblemforthepxlaplacian |
_version_ |
1807322168584830976 |