On the existence of bounded solutions for a nonlinear elliptic system
This work deals with the system (-Δ) mu = a(x) v p, (-Δ) mv = b(x) u q with Dirichlet boundary condition in a domain Ω ⊂ ℝ n, where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative so...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03733114_v191_n4_p771_Duran |
Aporte de: |
id |
todo:paper_03733114_v191_n4_p771_Duran |
---|---|
record_format |
dspace |
spelling |
todo:paper_03733114_v191_n4_p771_Duran2023-10-03T15:30:18Z On the existence of bounded solutions for a nonlinear elliptic system Durán, R.G. Sanmartino, M. Toschi, M. A priori estimates Critical exponents Elliptic systems Weighted Sobolev spaces This work deals with the system (-Δ) mu = a(x) v p, (-Δ) mv = b(x) u q with Dirichlet boundary condition in a domain Ω ⊂ ℝ n, where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464-479, 2004). Our paper generalize to m ≥ 1 the results of that paper. © 2011 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v191_n4_p771_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
A priori estimates Critical exponents Elliptic systems Weighted Sobolev spaces |
spellingShingle |
A priori estimates Critical exponents Elliptic systems Weighted Sobolev spaces Durán, R.G. Sanmartino, M. Toschi, M. On the existence of bounded solutions for a nonlinear elliptic system |
topic_facet |
A priori estimates Critical exponents Elliptic systems Weighted Sobolev spaces |
description |
This work deals with the system (-Δ) mu = a(x) v p, (-Δ) mv = b(x) u q with Dirichlet boundary condition in a domain Ω ⊂ ℝ n, where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n = 2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m = 1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464-479, 2004). Our paper generalize to m ≥ 1 the results of that paper. © 2011 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag. |
format |
JOUR |
author |
Durán, R.G. Sanmartino, M. Toschi, M. |
author_facet |
Durán, R.G. Sanmartino, M. Toschi, M. |
author_sort |
Durán, R.G. |
title |
On the existence of bounded solutions for a nonlinear elliptic system |
title_short |
On the existence of bounded solutions for a nonlinear elliptic system |
title_full |
On the existence of bounded solutions for a nonlinear elliptic system |
title_fullStr |
On the existence of bounded solutions for a nonlinear elliptic system |
title_full_unstemmed |
On the existence of bounded solutions for a nonlinear elliptic system |
title_sort |
on the existence of bounded solutions for a nonlinear elliptic system |
url |
http://hdl.handle.net/20.500.12110/paper_03733114_v191_n4_p771_Duran |
work_keys_str_mv |
AT duranrg ontheexistenceofboundedsolutionsforanonlinearellipticsystem AT sanmartinom ontheexistenceofboundedsolutionsforanonlinearellipticsystem AT toschim ontheexistenceofboundedsolutionsforanonlinearellipticsystem |
_version_ |
1807320066705850368 |