The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians

In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωd...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonheure, D., Rossi, J.D., Saintier, N.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure
Aporte de:
id todo:paper_03733114_v195_n5_p1771_Bonheure
record_format dspace
spelling todo:paper_03733114_v195_n5_p1771_Bonheure2023-10-03T15:30:19Z The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians Bonheure, D. Rossi, J.D. Saintier, N. Infinity Laplacian Nonlinear eigenvalue problem p-Laplacian Viscosity solutions In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Infinity Laplacian
Nonlinear eigenvalue problem
p-Laplacian
Viscosity solutions
spellingShingle Infinity Laplacian
Nonlinear eigenvalue problem
p-Laplacian
Viscosity solutions
Bonheure, D.
Rossi, J.D.
Saintier, N.
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
topic_facet Infinity Laplacian
Nonlinear eigenvalue problem
p-Laplacian
Viscosity solutions
description In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.
format JOUR
author Bonheure, D.
Rossi, J.D.
Saintier, N.
author_facet Bonheure, D.
Rossi, J.D.
Saintier, N.
author_sort Bonheure, D.
title The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
title_short The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
title_full The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
title_fullStr The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
title_full_unstemmed The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
title_sort limit as p→ ∞ in the eigenvalue problem for a system of p-laplacians
url http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure
work_keys_str_mv AT bonheured thelimitaspintheeigenvalueproblemforasystemofplaplacians
AT rossijd thelimitaspintheeigenvalueproblemforasystemofplaplacians
AT saintiern thelimitaspintheeigenvalueproblemforasystemofplaplacians
AT bonheured limitaspintheeigenvalueproblemforasystemofplaplacians
AT rossijd limitaspintheeigenvalueproblemforasystemofplaplacians
AT saintiern limitaspintheeigenvalueproblemforasystemofplaplacians
_version_ 1807318896202481664