The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωd...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure |
Aporte de: |
id |
todo:paper_03733114_v195_n5_p1771_Bonheure |
---|---|
record_format |
dspace |
spelling |
todo:paper_03733114_v195_n5_p1771_Bonheure2023-10-03T15:30:19Z The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians Bonheure, D. Rossi, J.D. Saintier, N. Infinity Laplacian Nonlinear eigenvalue problem p-Laplacian Viscosity solutions In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Infinity Laplacian Nonlinear eigenvalue problem p-Laplacian Viscosity solutions |
spellingShingle |
Infinity Laplacian Nonlinear eigenvalue problem p-Laplacian Viscosity solutions Bonheure, D. Rossi, J.D. Saintier, N. The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
topic_facet |
Infinity Laplacian Nonlinear eigenvalue problem p-Laplacian Viscosity solutions |
description |
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg. |
format |
JOUR |
author |
Bonheure, D. Rossi, J.D. Saintier, N. |
author_facet |
Bonheure, D. Rossi, J.D. Saintier, N. |
author_sort |
Bonheure, D. |
title |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_short |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_full |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_fullStr |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_full_unstemmed |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_sort |
limit as p→ ∞ in the eigenvalue problem for a system of p-laplacians |
url |
http://hdl.handle.net/20.500.12110/paper_03733114_v195_n5_p1771_Bonheure |
work_keys_str_mv |
AT bonheured thelimitaspintheeigenvalueproblemforasystemofplaplacians AT rossijd thelimitaspintheeigenvalueproblemforasystemofplaplacians AT saintiern thelimitaspintheeigenvalueproblemforasystemofplaplacians AT bonheured limitaspintheeigenvalueproblemforasystemofplaplacians AT rossijd limitaspintheeigenvalueproblemforasystemofplaplacians AT saintiern limitaspintheeigenvalueproblemforasystemofplaplacians |
_version_ |
1807318896202481664 |