A note on homogeneous Sobolev spaces of fractional order
We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always...
Guardado en:
Autores principales: | , |
---|---|
Formato: | INPR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03733114_v_n_p_Brasco |
Aporte de: |
id |
todo:paper_03733114_v_n_p_Brasco |
---|---|
record_format |
dspace |
spelling |
todo:paper_03733114_v_n_p_Brasco2023-10-03T15:30:21Z A note on homogeneous Sobolev spaces of fractional order Brasco, L. Salort, A. Fractional Sobolev spaces Nonlocal operators Poincaré inequality Real interpolation We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible. © 2019, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature. INPR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v_n_p_Brasco |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fractional Sobolev spaces Nonlocal operators Poincaré inequality Real interpolation |
spellingShingle |
Fractional Sobolev spaces Nonlocal operators Poincaré inequality Real interpolation Brasco, L. Salort, A. A note on homogeneous Sobolev spaces of fractional order |
topic_facet |
Fractional Sobolev spaces Nonlocal operators Poincaré inequality Real interpolation |
description |
We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible. © 2019, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature. |
format |
INPR |
author |
Brasco, L. Salort, A. |
author_facet |
Brasco, L. Salort, A. |
author_sort |
Brasco, L. |
title |
A note on homogeneous Sobolev spaces of fractional order |
title_short |
A note on homogeneous Sobolev spaces of fractional order |
title_full |
A note on homogeneous Sobolev spaces of fractional order |
title_fullStr |
A note on homogeneous Sobolev spaces of fractional order |
title_full_unstemmed |
A note on homogeneous Sobolev spaces of fractional order |
title_sort |
note on homogeneous sobolev spaces of fractional order |
url |
http://hdl.handle.net/20.500.12110/paper_03733114_v_n_p_Brasco |
work_keys_str_mv |
AT brascol anoteonhomogeneoussobolevspacesoffractionalorder AT salorta anoteonhomogeneoussobolevspacesoffractionalorder AT brascol noteonhomogeneoussobolevspacesoffractionalorder AT salorta noteonhomogeneoussobolevspacesoffractionalorder |
_version_ |
1807320132126507008 |