Lagrange and average interpolation over 3D anisotropic elements

An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each dir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Acosta, G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03770427_v135_n1_p91_Acosta
Aporte de:
id todo:paper_03770427_v135_n1_p91_Acosta
record_format dspace
spelling todo:paper_03770427_v135_n1_p91_Acosta2023-10-03T15:31:28Z Lagrange and average interpolation over 3D anisotropic elements Acosta, G. Anisotropic elements Average interpolation Lagrange interpolation Maximum angle condition Angle measurement Anisotropy Error analysis Estimation Lagrange interpolation Interpolation mathematical method An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of the element. On the other hand, merging several known results (Acosta and Durán, SIAM J. Numer. Anal. 37 (1999) 18-36; Durán, Math. Comp. 68 (1999) 187-199; Krizek, SIAM J. Numer. Anal. 29 (1992) 513-520; A1 Shenk, Math. Comp. 63 (1994) 105-119), we prove optimal order error for the P1-Lagrange interpolation in W1,p, > 2, with a constant depending on p as well as the maximum angle of the element. Again, under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree interpolations. © 2001 Elsevier Science B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03770427_v135_n1_p91_Acosta
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Anisotropic elements
Average interpolation
Lagrange interpolation
Maximum angle condition
Angle measurement
Anisotropy
Error analysis
Estimation
Lagrange interpolation
Interpolation
mathematical method
spellingShingle Anisotropic elements
Average interpolation
Lagrange interpolation
Maximum angle condition
Angle measurement
Anisotropy
Error analysis
Estimation
Lagrange interpolation
Interpolation
mathematical method
Acosta, G.
Lagrange and average interpolation over 3D anisotropic elements
topic_facet Anisotropic elements
Average interpolation
Lagrange interpolation
Maximum angle condition
Angle measurement
Anisotropy
Error analysis
Estimation
Lagrange interpolation
Interpolation
mathematical method
description An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each direction. For tetrahedra, the constant also depends on the maximum angle of the element. On the other hand, merging several known results (Acosta and Durán, SIAM J. Numer. Anal. 37 (1999) 18-36; Durán, Math. Comp. 68 (1999) 187-199; Krizek, SIAM J. Numer. Anal. 29 (1992) 513-520; A1 Shenk, Math. Comp. 63 (1994) 105-119), we prove optimal order error for the P1-Lagrange interpolation in W1,p, > 2, with a constant depending on p as well as the maximum angle of the element. Again, under the maximum angle condition, optimal order error estimates are obtained in the H1 norm for higher degree interpolations. © 2001 Elsevier Science B.V. All rights reserved.
format JOUR
author Acosta, G.
author_facet Acosta, G.
author_sort Acosta, G.
title Lagrange and average interpolation over 3D anisotropic elements
title_short Lagrange and average interpolation over 3D anisotropic elements
title_full Lagrange and average interpolation over 3D anisotropic elements
title_fullStr Lagrange and average interpolation over 3D anisotropic elements
title_full_unstemmed Lagrange and average interpolation over 3D anisotropic elements
title_sort lagrange and average interpolation over 3d anisotropic elements
url http://hdl.handle.net/20.500.12110/paper_03770427_v135_n1_p91_Acosta
work_keys_str_mv AT acostag lagrangeandaverageinterpolationover3danisotropicelements
_version_ 1807322943119687680