Lagrange and average interpolation over 3D anisotropic elements
An average interpolation is introduced for 3-rectangles and tetrahedra, and optimal order error estimates in the H1 norm are proved. The constant in the estimate depends "weakly" (improving the results given in Durán (Math. Comp. 68 (1999) 187-199) on the uniformity of the mesh in each dir...
Guardado en:
Autor principal: | Acosta, G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03770427_v135_n1_p91_Acosta |
Aporte de: |
Ejemplares similares
-
Lagrange and average interpolation over 3D anisotropic elements
Publicado: (2001) -
The minimal angle condition for quadrilateral finite elements of arbitrary degree
por: Acosta Rodriguez, Gabriel
Publicado: (2017) -
The minimal angle condition for quadrilateral finite elements of arbitrary degree
por: Acosta, G., et al. -
Error estimates for Q1 isoparametric elements satisfying a weak angle condition
por: Acosta, G., et al. -
Error estimates for Q1 isoparametric elements satisfying a weak angle condition
por: Acosta Rodriguez, Gabriel, et al.
Publicado: (2001)