Projective spaces of a C*-algebra
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the inv...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow |
Aporte de: |
id |
todo:paper_0378620X_v37_n2_p143_Andruchow |
---|---|
record_format |
dspace |
spelling |
todo:paper_0378620X_v37_n2_p143_Andruchow2023-10-03T15:33:12Z Projective spaces of a C*-algebra Andruchow, E. Corach, G. Stojanoff, D. Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε = 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics. Fil:Andruchow, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Corach, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Stojanoff, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε = 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics. |
format |
JOUR |
author |
Andruchow, E. Corach, G. Stojanoff, D. |
spellingShingle |
Andruchow, E. Corach, G. Stojanoff, D. Projective spaces of a C*-algebra |
author_facet |
Andruchow, E. Corach, G. Stojanoff, D. |
author_sort |
Andruchow, E. |
title |
Projective spaces of a C*-algebra |
title_short |
Projective spaces of a C*-algebra |
title_full |
Projective spaces of a C*-algebra |
title_fullStr |
Projective spaces of a C*-algebra |
title_full_unstemmed |
Projective spaces of a C*-algebra |
title_sort |
projective spaces of a c*-algebra |
url |
http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow |
work_keys_str_mv |
AT andruchowe projectivespacesofacalgebra AT corachg projectivespacesofacalgebra AT stojanoffd projectivespacesofacalgebra |
_version_ |
1807319658173300736 |