Projective spaces of a C*-algebra

Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the inv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andruchow, E., Corach, G., Stojanoff, D.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow
Aporte de:
id todo:paper_0378620X_v37_n2_p143_Andruchow
record_format dspace
spelling todo:paper_0378620X_v37_n2_p143_Andruchow2023-10-03T15:33:12Z Projective spaces of a C*-algebra Andruchow, E. Corach, G. Stojanoff, D. Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε = 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics. Fil:Andruchow, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Corach, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Stojanoff, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebra A with a fixed projection p. The resulting space P(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group of A. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean - in Schwarz-Zaks terminology) are considered, allowing a comparison among P(p), the Grassmann manifold of A and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε = 2p - 1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
format JOUR
author Andruchow, E.
Corach, G.
Stojanoff, D.
spellingShingle Andruchow, E.
Corach, G.
Stojanoff, D.
Projective spaces of a C*-algebra
author_facet Andruchow, E.
Corach, G.
Stojanoff, D.
author_sort Andruchow, E.
title Projective spaces of a C*-algebra
title_short Projective spaces of a C*-algebra
title_full Projective spaces of a C*-algebra
title_fullStr Projective spaces of a C*-algebra
title_full_unstemmed Projective spaces of a C*-algebra
title_sort projective spaces of a c*-algebra
url http://hdl.handle.net/20.500.12110/paper_0378620X_v37_n2_p143_Andruchow
work_keys_str_mv AT andruchowe projectivespacesofacalgebra
AT corachg projectivespacesofacalgebra
AT stojanoffd projectivespacesofacalgebra
_version_ 1807319658173300736