Positive decompositions of selfadjoint operators
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi |
Aporte de: |
id |
todo:paper_0378620X_v67_n1_p109_Fongi |
---|---|
record_format |
dspace |
spelling |
todo:paper_0378620X_v67_n1_p109_Fongi2023-10-03T15:33:13Z Positive decompositions of selfadjoint operators Fongi, G. Maestripieri, A. Congruence of operators Indefinite metric spaces Selfadjoint operators Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. © Birkhäuser / Springer Basel AG 2010. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Congruence of operators Indefinite metric spaces Selfadjoint operators |
spellingShingle |
Congruence of operators Indefinite metric spaces Selfadjoint operators Fongi, G. Maestripieri, A. Positive decompositions of selfadjoint operators |
topic_facet |
Congruence of operators Indefinite metric spaces Selfadjoint operators |
description |
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. © Birkhäuser / Springer Basel AG 2010. |
format |
JOUR |
author |
Fongi, G. Maestripieri, A. |
author_facet |
Fongi, G. Maestripieri, A. |
author_sort |
Fongi, G. |
title |
Positive decompositions of selfadjoint operators |
title_short |
Positive decompositions of selfadjoint operators |
title_full |
Positive decompositions of selfadjoint operators |
title_fullStr |
Positive decompositions of selfadjoint operators |
title_full_unstemmed |
Positive decompositions of selfadjoint operators |
title_sort |
positive decompositions of selfadjoint operators |
url |
http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi |
work_keys_str_mv |
AT fongig positivedecompositionsofselfadjointoperators AT maestripieria positivedecompositionsofselfadjointoperators |
_version_ |
1807315462156976128 |