Positive decompositions of selfadjoint operators

Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fongi, G., Maestripieri, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi
Aporte de:
id todo:paper_0378620X_v67_n1_p109_Fongi
record_format dspace
spelling todo:paper_0378620X_v67_n1_p109_Fongi2023-10-03T15:33:13Z Positive decompositions of selfadjoint operators Fongi, G. Maestripieri, A. Congruence of operators Indefinite metric spaces Selfadjoint operators Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. © Birkhäuser / Springer Basel AG 2010. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Congruence of operators
Indefinite metric spaces
Selfadjoint operators
spellingShingle Congruence of operators
Indefinite metric spaces
Selfadjoint operators
Fongi, G.
Maestripieri, A.
Positive decompositions of selfadjoint operators
topic_facet Congruence of operators
Indefinite metric spaces
Selfadjoint operators
description Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. © Birkhäuser / Springer Basel AG 2010.
format JOUR
author Fongi, G.
Maestripieri, A.
author_facet Fongi, G.
Maestripieri, A.
author_sort Fongi, G.
title Positive decompositions of selfadjoint operators
title_short Positive decompositions of selfadjoint operators
title_full Positive decompositions of selfadjoint operators
title_fullStr Positive decompositions of selfadjoint operators
title_full_unstemmed Positive decompositions of selfadjoint operators
title_sort positive decompositions of selfadjoint operators
url http://hdl.handle.net/20.500.12110/paper_0378620X_v67_n1_p109_Fongi
work_keys_str_mv AT fongig positivedecompositionsofselfadjointoperators
AT maestripieria positivedecompositionsofselfadjointoperators
_version_ 1807315462156976128